Uniform Convergence and the Hahn-Schur Theorem

Let E be a vector space, F aset, G be a locally convex space, b : E X F - G a map such that ò(-,y): E - G is linear for every y G F; we write b(x, y) = x · y for brevity. Let ë be a scalar sequence space and w(E,F) the weakest topology on E such that the linear maps b(-,y): E - G are continuous for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Swartz,Charles
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2012
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172012000200004
record_format dspace
spelling oai:scielo:S0716-091720120002000042012-07-18Uniform Convergence and the Hahn-Schur TheoremSwartz,Charles Multiplier convergent series uniform convergence Hahn-Schur Theorem Let E be a vector space, F aset, G be a locally convex space, b : E X F - G a map such that ò(-,y): E - G is linear for every y G F; we write b(x, y) = x · y for brevity. Let ë be a scalar sequence space and w(E,F) the weakest topology on E such that the linear maps b(-,y): E - G are continuous for all y G F .A series Xj in X is ë multiplier convergent with respect to w(E, F) if for each t = {tj} G ë ,the series Xj=! tj Xj is w(E,F) convergent in E. For multiplier spaces ë satisfying certain gliding hump properties we establish the following uniform convergence result: Suppose j XX ij is ë multiplier convergent with respect to w(E, F) for each i G N and for each t G ë the set {Xj=! tj Xj : i} is uniformly bounded on any subset B C F such that {x · y : y G B} is bounded for x G E.Then for each t G ë the series ^jjLi tj xj · y converge uniformly for y G B,i G N. This result is used to prove a Hahn-Schur Theorem for series such that lim¿ Xj=! tj xj · y exists for t G ë,y G F. Applications of these abstract results are given to spaces of linear operators, vector spaces in duality, spaces of continuous functions and spaces with Schauder bases.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.31 n.2 20122012-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200004en10.4067/S0716-09172012000200004
institution Scielo Chile
collection Scielo Chile
language English
topic Multiplier convergent series
uniform convergence
Hahn-Schur Theorem
spellingShingle Multiplier convergent series
uniform convergence
Hahn-Schur Theorem
Swartz,Charles
Uniform Convergence and the Hahn-Schur Theorem
description Let E be a vector space, F aset, G be a locally convex space, b : E X F - G a map such that ò(-,y): E - G is linear for every y G F; we write b(x, y) = x · y for brevity. Let ë be a scalar sequence space and w(E,F) the weakest topology on E such that the linear maps b(-,y): E - G are continuous for all y G F .A series Xj in X is ë multiplier convergent with respect to w(E, F) if for each t = {tj} G ë ,the series Xj=! tj Xj is w(E,F) convergent in E. For multiplier spaces ë satisfying certain gliding hump properties we establish the following uniform convergence result: Suppose j XX ij is ë multiplier convergent with respect to w(E, F) for each i G N and for each t G ë the set {Xj=! tj Xj : i} is uniformly bounded on any subset B C F such that {x · y : y G B} is bounded for x G E.Then for each t G ë the series ^jjLi tj xj · y converge uniformly for y G B,i G N. This result is used to prove a Hahn-Schur Theorem for series such that lim¿ Xj=! tj xj · y exists for t G ë,y G F. Applications of these abstract results are given to spaces of linear operators, vector spaces in duality, spaces of continuous functions and spaces with Schauder bases.
author Swartz,Charles
author_facet Swartz,Charles
author_sort Swartz,Charles
title Uniform Convergence and the Hahn-Schur Theorem
title_short Uniform Convergence and the Hahn-Schur Theorem
title_full Uniform Convergence and the Hahn-Schur Theorem
title_fullStr Uniform Convergence and the Hahn-Schur Theorem
title_full_unstemmed Uniform Convergence and the Hahn-Schur Theorem
title_sort uniform convergence and the hahn-schur theorem
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2012
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200004
work_keys_str_mv AT swartzcharles uniformconvergenceandthehahnschurtheorem
_version_ 1718439783289585664