Uniform Convergence and the Hahn-Schur Theorem
Let E be a vector space, F aset, G be a locally convex space, b : E X F - G a map such that ò(-,y): E - G is linear for every y G F; we write b(x, y) = x · y for brevity. Let ë be a scalar sequence space and w(E,F) the weakest topology on E such that the linear maps b(-,y): E - G are continuous for...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2012
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172012000200004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720120002000042012-07-18Uniform Convergence and the Hahn-Schur TheoremSwartz,Charles Multiplier convergent series uniform convergence Hahn-Schur Theorem Let E be a vector space, F aset, G be a locally convex space, b : E X F - G a map such that ò(-,y): E - G is linear for every y G F; we write b(x, y) = x · y for brevity. Let ë be a scalar sequence space and w(E,F) the weakest topology on E such that the linear maps b(-,y): E - G are continuous for all y G F .A series Xj in X is ë multiplier convergent with respect to w(E, F) if for each t = {tj} G ë ,the series Xj=! tj Xj is w(E,F) convergent in E. For multiplier spaces ë satisfying certain gliding hump properties we establish the following uniform convergence result: Suppose j XX ij is ë multiplier convergent with respect to w(E, F) for each i G N and for each t G ë the set {Xj=! tj Xj : i} is uniformly bounded on any subset B C F such that {x · y : y G B} is bounded for x G E.Then for each t G ë the series ^jjLi tj xj · y converge uniformly for y G B,i G N. This result is used to prove a Hahn-Schur Theorem for series such that lim¿ Xj=! tj xj · y exists for t G ë,y G F. Applications of these abstract results are given to spaces of linear operators, vector spaces in duality, spaces of continuous functions and spaces with Schauder bases.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.31 n.2 20122012-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200004en10.4067/S0716-09172012000200004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Multiplier convergent series uniform convergence Hahn-Schur Theorem |
spellingShingle |
Multiplier convergent series uniform convergence Hahn-Schur Theorem Swartz,Charles Uniform Convergence and the Hahn-Schur Theorem |
description |
Let E be a vector space, F aset, G be a locally convex space, b : E X F - G a map such that ò(-,y): E - G is linear for every y G F; we write b(x, y) = x · y for brevity. Let ë be a scalar sequence space and w(E,F) the weakest topology on E such that the linear maps b(-,y): E - G are continuous for all y G F .A series Xj in X is ë multiplier convergent with respect to w(E, F) if for each t = {tj} G ë ,the series Xj=! tj Xj is w(E,F) convergent in E. For multiplier spaces ë satisfying certain gliding hump properties we establish the following uniform convergence result: Suppose j XX ij is ë multiplier convergent with respect to w(E, F) for each i G N and for each t G ë the set {Xj=! tj Xj : i} is uniformly bounded on any subset B C F such that {x · y : y G B} is bounded for x G E.Then for each t G ë the series ^jjLi tj xj · y converge uniformly for y G B,i G N. This result is used to prove a Hahn-Schur Theorem for series such that lim¿ Xj=! tj xj · y exists for t G ë,y G F. Applications of these abstract results are given to spaces of linear operators, vector spaces in duality, spaces of continuous functions and spaces with Schauder bases. |
author |
Swartz,Charles |
author_facet |
Swartz,Charles |
author_sort |
Swartz,Charles |
title |
Uniform Convergence and the Hahn-Schur Theorem |
title_short |
Uniform Convergence and the Hahn-Schur Theorem |
title_full |
Uniform Convergence and the Hahn-Schur Theorem |
title_fullStr |
Uniform Convergence and the Hahn-Schur Theorem |
title_full_unstemmed |
Uniform Convergence and the Hahn-Schur Theorem |
title_sort |
uniform convergence and the hahn-schur theorem |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2012 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200004 |
work_keys_str_mv |
AT swartzcharles uniformconvergenceandthehahnschurtheorem |
_version_ |
1718439783289585664 |