Uniform Convergence and the Hahn-Schur Theorem
Let E be a vector space, F aset, G be a locally convex space, b : E X F - G a map such that ò(-,y): E - G is linear for every y G F; we write b(x, y) = x · y for brevity. Let ë be a scalar sequence space and w(E,F) the weakest topology on E such that the linear maps b(-,y): E - G are continuous for...
Guardado en:
Autor principal: | Swartz,Charles |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2012
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Generalized deferred Cesàro equi-statistical convergence and analogous approximation theorems
por: Parida,P., et al.
Publicado: (2020) -
SCHUR RING AND QUASI-SIMPLE MODULES
por: Domínguez-Wade,Pedro
Publicado: (2009) -
Existence Results of a Nonlocal Fractional Symmetric Hahn Integrodifference Boundary Value Problem
por: Rujira Ouncharoen, et al.
Publicado: (2021) -
µ-Statistically convergent function sequences in probabilistic normed linear spaces
por: Sen,Mausumi, et al.
Publicado: (2019) -
A convergence result for unconditional series in Lp(ì)
por: Medina,Juan M, et al.
Publicado: (2013)