Hochschild-Serre Statement for the total cohomology

Let M be a complex manifold and F a Om-module with a g-holomorphic action where g is a complex Lie algebra (cf. [3]). We denote by H(g, F) the "total cohomology" as defined in [1] [2]. Then we prove that, for any ideal a c g,the module H* (a, F) viewed as a g/a-module, we have a s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lescure,François
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2012
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172012000200005
record_format dspace
spelling oai:scielo:S0716-091720120002000052012-07-18Hochschild-Serre Statement for the total cohomologyLescure,FrançoisLet M be a complex manifold and F a Om-module with a g-holomorphic action where g is a complex Lie algebra (cf. [3]). We denote by H(g, F) the "total cohomology" as defined in [1] [2]. Then we prove that, for any ideal a c g,the module H* (a, F) viewed as a g/a-module, we have a spectral sequence which converges to H(g, F)info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.31 n.2 20122012-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200005en10.4067/S0716-09172012000200005
institution Scielo Chile
collection Scielo Chile
language English
description Let M be a complex manifold and F a Om-module with a g-holomorphic action where g is a complex Lie algebra (cf. [3]). We denote by H(g, F) the "total cohomology" as defined in [1] [2]. Then we prove that, for any ideal a c g,the module H* (a, F) viewed as a g/a-module, we have a spectral sequence which converges to H(g, F)
author Lescure,François
spellingShingle Lescure,François
Hochschild-Serre Statement for the total cohomology
author_facet Lescure,François
author_sort Lescure,François
title Hochschild-Serre Statement for the total cohomology
title_short Hochschild-Serre Statement for the total cohomology
title_full Hochschild-Serre Statement for the total cohomology
title_fullStr Hochschild-Serre Statement for the total cohomology
title_full_unstemmed Hochschild-Serre Statement for the total cohomology
title_sort hochschild-serre statement for the total cohomology
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2012
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200005
work_keys_str_mv AT lescurefrancois hochschildserrestatementforthetotalcohomology
_version_ 1718439783464697856