Le constant families of singular hypersurfaces *
We investigate the constancy of the Le numbers of one parameter deformations F :(C X Cn, 0) - (C, 0) of holomorphic germs of functions f :(Cn, 0) - (C, 0) which have singular set with any dimension s > 1. We characterize le constant deformations in terms of the non-splitting of the polar varietie...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2012
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000400002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We investigate the constancy of the Le numbers of one parameter deformations F :(C X Cn, 0) - (C, 0) of holomorphic germs of functions f :(Cn, 0) - (C, 0) which have singular set with any dimension s > 1. We characterize le constant deformations in terms of the non-splitting of the polar varieties and also from the integral closure of the ideal Jz (F) in On+1 generated by the partial derivatives of F with respect to the variables z = (z!,...,z n). |
---|