A geometric proof of the Lelong-Poincaré formula

We propose a geometric proof of the fundamental Lelong-Poincaré formula : dd c log |/ | = [/ = 0] where f is any nonzero holomorphic function defined on a complex analytic manifold V and [/ = 0] is the integration current on the divisor of the zeroes of /. Our approach is based, via the local parame...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: El Amrani,M, Jeddi,A
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172013000100001
record_format dspace
spelling oai:scielo:S0716-091720130001000012014-09-09A geometric proof of the Lelong-Poincaré formulaEl Amrani,MJeddi,A Complex analytic manifolds analytic sets local parametrization theorem integration currents branching coverings We propose a geometric proof of the fundamental Lelong-Poincaré formula : dd c log |/ | = [/ = 0] where f is any nonzero holomorphic function defined on a complex analytic manifold V and [/ = 0] is the integration current on the divisor of the zeroes of /. Our approach is based, via the local parametrization theorem, on a precise study of the local geometry of the hypersurface given by /. Our proof extends naturally to the meromorphic case.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.32 n.1 20132013-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100001en10.4067/S0716-09172013000100001
institution Scielo Chile
collection Scielo Chile
language English
topic Complex analytic manifolds
analytic sets
local parametrization theorem
integration currents
branching coverings
spellingShingle Complex analytic manifolds
analytic sets
local parametrization theorem
integration currents
branching coverings
El Amrani,M
Jeddi,A
A geometric proof of the Lelong-Poincaré formula
description We propose a geometric proof of the fundamental Lelong-Poincaré formula : dd c log |/ | = [/ = 0] where f is any nonzero holomorphic function defined on a complex analytic manifold V and [/ = 0] is the integration current on the divisor of the zeroes of /. Our approach is based, via the local parametrization theorem, on a precise study of the local geometry of the hypersurface given by /. Our proof extends naturally to the meromorphic case.
author El Amrani,M
Jeddi,A
author_facet El Amrani,M
Jeddi,A
author_sort El Amrani,M
title A geometric proof of the Lelong-Poincaré formula
title_short A geometric proof of the Lelong-Poincaré formula
title_full A geometric proof of the Lelong-Poincaré formula
title_fullStr A geometric proof of the Lelong-Poincaré formula
title_full_unstemmed A geometric proof of the Lelong-Poincaré formula
title_sort geometric proof of the lelong-poincaré formula
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100001
work_keys_str_mv AT elamranim ageometricproofofthelelongpoincareformula
AT jeddia ageometricproofofthelelongpoincareformula
AT elamranim geometricproofofthelelongpoincareformula
AT jeddia geometricproofofthelelongpoincareformula
_version_ 1718439787142053888