A geometric proof of the Lelong-Poincaré formula
We propose a geometric proof of the fundamental Lelong-Poincaré formula : dd c log |/ | = [/ = 0] where f is any nonzero holomorphic function defined on a complex analytic manifold V and [/ = 0] is the integration current on the divisor of the zeroes of /. Our approach is based, via the local parame...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172013000100001 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720130001000012014-09-09A geometric proof of the Lelong-Poincaré formulaEl Amrani,MJeddi,A Complex analytic manifolds analytic sets local parametrization theorem integration currents branching coverings We propose a geometric proof of the fundamental Lelong-Poincaré formula : dd c log |/ | = [/ = 0] where f is any nonzero holomorphic function defined on a complex analytic manifold V and [/ = 0] is the integration current on the divisor of the zeroes of /. Our approach is based, via the local parametrization theorem, on a precise study of the local geometry of the hypersurface given by /. Our proof extends naturally to the meromorphic case.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.32 n.1 20132013-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100001en10.4067/S0716-09172013000100001 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Complex analytic manifolds analytic sets local parametrization theorem integration currents branching coverings |
spellingShingle |
Complex analytic manifolds analytic sets local parametrization theorem integration currents branching coverings El Amrani,M Jeddi,A A geometric proof of the Lelong-Poincaré formula |
description |
We propose a geometric proof of the fundamental Lelong-Poincaré formula : dd c log |/ | = [/ = 0] where f is any nonzero holomorphic function defined on a complex analytic manifold V and [/ = 0] is the integration current on the divisor of the zeroes of /. Our approach is based, via the local parametrization theorem, on a precise study of the local geometry of the hypersurface given by /. Our proof extends naturally to the meromorphic case. |
author |
El Amrani,M Jeddi,A |
author_facet |
El Amrani,M Jeddi,A |
author_sort |
El Amrani,M |
title |
A geometric proof of the Lelong-Poincaré formula |
title_short |
A geometric proof of the Lelong-Poincaré formula |
title_full |
A geometric proof of the Lelong-Poincaré formula |
title_fullStr |
A geometric proof of the Lelong-Poincaré formula |
title_full_unstemmed |
A geometric proof of the Lelong-Poincaré formula |
title_sort |
geometric proof of the lelong-poincaré formula |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100001 |
work_keys_str_mv |
AT elamranim ageometricproofofthelelongpoincareformula AT jeddia ageometricproofofthelelongpoincareformula AT elamranim geometricproofofthelelongpoincareformula AT jeddia geometricproofofthelelongpoincareformula |
_version_ |
1718439787142053888 |