A geometric proof of the Lelong-Poincaré formula
We propose a geometric proof of the fundamental Lelong-Poincaré formula : dd c log |/ | = [/ = 0] where f is any nonzero holomorphic function defined on a complex analytic manifold V and [/ = 0] is the integration current on the divisor of the zeroes of /. Our approach is based, via the local parame...
Guardado en:
Autores principales: | El Amrani,M, Jeddi,A |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds
por: Yagisita Hiroki
Publicado: (2019) -
A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLIS THEOREM
por: HIDALGO,RUBÉN
Publicado: (2003) - Talanta
-
Some New Results on Bicomplex Bernstein Polynomials
por: Carlo Cattani, et al.
Publicado: (2021) - Analytical chemistry insights