A new convergence analysis for the two-step Newton method of order three

We present a tighter than before semilocal convergence analysis for the two-step Newton method of order three using recurrent functions. Numerical examples are also provided to show that our convergence criteria are satisfied but earlier studies such as in nine,thirteen,fifteen are not satisfied.

Guardado en:
Detalles Bibliográficos
Autores principales: Argyros,I. K, Khattri,S. K
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172013000100006
record_format dspace
spelling oai:scielo:S0716-091720130001000062014-09-09A new convergence analysis for the two-step Newton method of order threeArgyros,I. KKhattri,S. K Two-step Newton method Newton's method Banach space Kantorovich hypothesis majorizing sequence Lipschitz/center-Lipschitz conditions We present a tighter than before semilocal convergence analysis for the two-step Newton method of order three using recurrent functions. Numerical examples are also provided to show that our convergence criteria are satisfied but earlier studies such as in nine,thirteen,fifteen are not satisfied.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.32 n.1 20132013-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100006en10.4067/S0716-09172013000100006
institution Scielo Chile
collection Scielo Chile
language English
topic Two-step Newton method
Newton's method
Banach space
Kantorovich hypothesis
majorizing sequence
Lipschitz/center-Lipschitz conditions
spellingShingle Two-step Newton method
Newton's method
Banach space
Kantorovich hypothesis
majorizing sequence
Lipschitz/center-Lipschitz conditions
Argyros,I. K
Khattri,S. K
A new convergence analysis for the two-step Newton method of order three
description We present a tighter than before semilocal convergence analysis for the two-step Newton method of order three using recurrent functions. Numerical examples are also provided to show that our convergence criteria are satisfied but earlier studies such as in nine,thirteen,fifteen are not satisfied.
author Argyros,I. K
Khattri,S. K
author_facet Argyros,I. K
Khattri,S. K
author_sort Argyros,I. K
title A new convergence analysis for the two-step Newton method of order three
title_short A new convergence analysis for the two-step Newton method of order three
title_full A new convergence analysis for the two-step Newton method of order three
title_fullStr A new convergence analysis for the two-step Newton method of order three
title_full_unstemmed A new convergence analysis for the two-step Newton method of order three
title_sort new convergence analysis for the two-step newton method of order three
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100006
work_keys_str_mv AT argyrosik anewconvergenceanalysisforthetwostepnewtonmethodoforderthree
AT khattrisk anewconvergenceanalysisforthetwostepnewtonmethodoforderthree
AT argyrosik newconvergenceanalysisforthetwostepnewtonmethodoforderthree
AT khattrisk newconvergenceanalysisforthetwostepnewtonmethodoforderthree
_version_ 1718439788538757120