A new convergence analysis for the two-step Newton method of order three
We present a tighter than before semilocal convergence analysis for the two-step Newton method of order three using recurrent functions. Numerical examples are also provided to show that our convergence criteria are satisfied but earlier studies such as in nine,thirteen,fifteen are not satisfied.
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172013000100006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720130001000062014-09-09A new convergence analysis for the two-step Newton method of order threeArgyros,I. KKhattri,S. K Two-step Newton method Newton's method Banach space Kantorovich hypothesis majorizing sequence Lipschitz/center-Lipschitz conditions We present a tighter than before semilocal convergence analysis for the two-step Newton method of order three using recurrent functions. Numerical examples are also provided to show that our convergence criteria are satisfied but earlier studies such as in nine,thirteen,fifteen are not satisfied.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.32 n.1 20132013-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100006en10.4067/S0716-09172013000100006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Two-step Newton method Newton's method Banach space Kantorovich hypothesis majorizing sequence Lipschitz/center-Lipschitz conditions |
spellingShingle |
Two-step Newton method Newton's method Banach space Kantorovich hypothesis majorizing sequence Lipschitz/center-Lipschitz conditions Argyros,I. K Khattri,S. K A new convergence analysis for the two-step Newton method of order three |
description |
We present a tighter than before semilocal convergence analysis for the two-step Newton method of order three using recurrent functions. Numerical examples are also provided to show that our convergence criteria are satisfied but earlier studies such as in nine,thirteen,fifteen are not satisfied. |
author |
Argyros,I. K Khattri,S. K |
author_facet |
Argyros,I. K Khattri,S. K |
author_sort |
Argyros,I. K |
title |
A new convergence analysis for the two-step Newton method of order three |
title_short |
A new convergence analysis for the two-step Newton method of order three |
title_full |
A new convergence analysis for the two-step Newton method of order three |
title_fullStr |
A new convergence analysis for the two-step Newton method of order three |
title_full_unstemmed |
A new convergence analysis for the two-step Newton method of order three |
title_sort |
new convergence analysis for the two-step newton method of order three |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100006 |
work_keys_str_mv |
AT argyrosik anewconvergenceanalysisforthetwostepnewtonmethodoforderthree AT khattrisk anewconvergenceanalysisforthetwostepnewtonmethodoforderthree AT argyrosik newconvergenceanalysisforthetwostepnewtonmethodoforderthree AT khattrisk newconvergenceanalysisforthetwostepnewtonmethodoforderthree |
_version_ |
1718439788538757120 |