On square sum graphs

A (p, q)-graph G is said to be square sum, if there exists a bijection f : V(G) - {0,1, 2,...,p - 1} such that the induced function f * : E(G) - N given by f * (uv) = (f (u))² + (f (v))² for every uv G E(G) is injective. In this paper we initiate a study on square sum graphs and prove that trees, un...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Germina,K. A., Sebastian,Reena
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A (p, q)-graph G is said to be square sum, if there exists a bijection f : V(G) - {0,1, 2,...,p - 1} such that the induced function f * : E(G) - N given by f * (uv) = (f (u))² + (f (v))² for every uv G E(G) is injective. In this paper we initiate a study on square sum graphs and prove that trees, unicyclic graphs, mCn,m > 1,cycle with a chord, the graph obtained by joining two copies of cycle Cn by a path Pk and the graph defined by path union of k copies of Cn, when the path Pn = P2 are square sum.