The Nemytskii operator on bounded ö-variation in the mean spaces
We introduce the notion of bounded Ö-variation in the sense of LÖ-norm. We obtain a Riesz type result for functions of bounded Ö-variation in the mean. We also show that if the Nemytskii operator act on the bounded Ö-variation in the mean spaces into itself and satisfy some Lipschitz condition there...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172013000200003 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720130002000032013-06-26The Nemytskii operator on bounded ö-variation in the mean spacesCastillo,René ErlinMerentes,NelsonTrousselot,Eduard p, á)-variation Nemytskii operator We introduce the notion of bounded Ö-variation in the sense of LÖ-norm. We obtain a Riesz type result for functions of bounded Ö-variation in the mean. We also show that if the Nemytskii operator act on the bounded Ö-variation in the mean spaces into itself and satisfy some Lipschitz condition there exist two functions g and h belonging to the bounded Ö-variation in the mean space such that f (t,y) = g(t)y + h(t),t ∈ [0, 2ð], y ∈ R.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.32 n.2 20132013-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200003en10.4067/S0716-09172013000200003 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
p, á)-variation Nemytskii operator |
spellingShingle |
p, á)-variation Nemytskii operator Castillo,René Erlin Merentes,Nelson Trousselot,Eduard The Nemytskii operator on bounded ö-variation in the mean spaces |
description |
We introduce the notion of bounded Ö-variation in the sense of LÖ-norm. We obtain a Riesz type result for functions of bounded Ö-variation in the mean. We also show that if the Nemytskii operator act on the bounded Ö-variation in the mean spaces into itself and satisfy some Lipschitz condition there exist two functions g and h belonging to the bounded Ö-variation in the mean space such that f (t,y) = g(t)y + h(t),t ∈ [0, 2ð], y ∈ R. |
author |
Castillo,René Erlin Merentes,Nelson Trousselot,Eduard |
author_facet |
Castillo,René Erlin Merentes,Nelson Trousselot,Eduard |
author_sort |
Castillo,René Erlin |
title |
The Nemytskii operator on bounded ö-variation in the mean spaces |
title_short |
The Nemytskii operator on bounded ö-variation in the mean spaces |
title_full |
The Nemytskii operator on bounded ö-variation in the mean spaces |
title_fullStr |
The Nemytskii operator on bounded ö-variation in the mean spaces |
title_full_unstemmed |
The Nemytskii operator on bounded ö-variation in the mean spaces |
title_sort |
nemytskii operator on bounded ö-variation in the mean spaces |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200003 |
work_keys_str_mv |
AT castilloreneerlin thenemytskiioperatoronboundedovariationinthemeanspaces AT merentesnelson thenemytskiioperatoronboundedovariationinthemeanspaces AT trousseloteduard thenemytskiioperatoronboundedovariationinthemeanspaces AT castilloreneerlin nemytskiioperatoronboundedovariationinthemeanspaces AT merentesnelson nemytskiioperatoronboundedovariationinthemeanspaces AT trousseloteduard nemytskiioperatoronboundedovariationinthemeanspaces |
_version_ |
1718439789563215872 |