An approximation formula for n!
We prove the following very accurate approximation formula for the factorial function: <img src="http:/fbpe/img/proy/v32n2/art6.1.jpg" name="_x0000_i1029" width=383 height=46 id="_x0000_i1029"> This gives better results than the following approximation formula <...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172013000200006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720130002000062013-06-26An approximation formula for n!Batir,Necdet Gamma function Stirling formula Euler-Mascheroni constant harmonic numbers inequalities digamma function We prove the following very accurate approximation formula for the factorial function: <img src="http:/fbpe/img/proy/v32n2/art6.1.jpg" name="_x0000_i1029" width=383 height=46 id="_x0000_i1029"> This gives better results than the following approximation formula <img src="http:/fbpe/img/proy/v32n2/art6.2.jpg" name="_x0000_i1028" width=455 height=49 id="_x0000_i1028"> which is established by the author [5] and C. Mortici [16] independently, and gives similar results with <img src="http:/fbpe/img/proy/v32n2/art6.3.jpg" name="_x0000_i1027" width=369 height=48 id="_x0000_i1027"> which is established by C. Mortici in his very new paper [8].info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.32 n.2 20132013-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200006en10.4067/S0716-09172013000200006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Gamma function Stirling formula Euler-Mascheroni constant harmonic numbers inequalities digamma function |
spellingShingle |
Gamma function Stirling formula Euler-Mascheroni constant harmonic numbers inequalities digamma function Batir,Necdet An approximation formula for n! |
description |
We prove the following very accurate approximation formula for the factorial function: <img src="http:/fbpe/img/proy/v32n2/art6.1.jpg" name="_x0000_i1029" width=383 height=46 id="_x0000_i1029"> This gives better results than the following approximation formula <img src="http:/fbpe/img/proy/v32n2/art6.2.jpg" name="_x0000_i1028" width=455 height=49 id="_x0000_i1028"> which is established by the author [5] and C. Mortici [16] independently, and gives similar results with <img src="http:/fbpe/img/proy/v32n2/art6.3.jpg" name="_x0000_i1027" width=369 height=48 id="_x0000_i1027"> which is established by C. Mortici in his very new paper [8]. |
author |
Batir,Necdet |
author_facet |
Batir,Necdet |
author_sort |
Batir,Necdet |
title |
An approximation formula for n! |
title_short |
An approximation formula for n! |
title_full |
An approximation formula for n! |
title_fullStr |
An approximation formula for n! |
title_full_unstemmed |
An approximation formula for n! |
title_sort |
approximation formula for n! |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200006 |
work_keys_str_mv |
AT batirnecdet anapproximationformulaforn AT batirnecdet approximationformulaforn |
_version_ |
1718439790346502144 |