An approximation formula for n!

We prove the following very accurate approximation formula for the factorial function: <img src="http:/fbpe/img/proy/v32n2/art6.1.jpg" name="_x0000_i1029" width=383 height=46 id="_x0000_i1029"> This gives better results than the following approximation formula <...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Batir,Necdet
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172013000200006
record_format dspace
spelling oai:scielo:S0716-091720130002000062013-06-26An approximation formula for n!Batir,Necdet Gamma function Stirling formula Euler-Mascheroni constant harmonic numbers inequalities digamma function We prove the following very accurate approximation formula for the factorial function: <img src="http:/fbpe/img/proy/v32n2/art6.1.jpg" name="_x0000_i1029" width=383 height=46 id="_x0000_i1029"> This gives better results than the following approximation formula <img src="http:/fbpe/img/proy/v32n2/art6.2.jpg" name="_x0000_i1028" width=455 height=49 id="_x0000_i1028"> which is established by the author [5] and C. Mortici [16] independently, and gives similar results with <img src="http:/fbpe/img/proy/v32n2/art6.3.jpg" name="_x0000_i1027" width=369 height=48 id="_x0000_i1027"> which is established by C. Mortici in his very new paper [8].info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.32 n.2 20132013-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200006en10.4067/S0716-09172013000200006
institution Scielo Chile
collection Scielo Chile
language English
topic Gamma function
Stirling formula
Euler-Mascheroni constant
harmonic numbers
inequalities
digamma function
spellingShingle Gamma function
Stirling formula
Euler-Mascheroni constant
harmonic numbers
inequalities
digamma function
Batir,Necdet
An approximation formula for n!
description We prove the following very accurate approximation formula for the factorial function: <img src="http:/fbpe/img/proy/v32n2/art6.1.jpg" name="_x0000_i1029" width=383 height=46 id="_x0000_i1029"> This gives better results than the following approximation formula <img src="http:/fbpe/img/proy/v32n2/art6.2.jpg" name="_x0000_i1028" width=455 height=49 id="_x0000_i1028"> which is established by the author [5] and C. Mortici [16] independently, and gives similar results with <img src="http:/fbpe/img/proy/v32n2/art6.3.jpg" name="_x0000_i1027" width=369 height=48 id="_x0000_i1027"> which is established by C. Mortici in his very new paper [8].
author Batir,Necdet
author_facet Batir,Necdet
author_sort Batir,Necdet
title An approximation formula for n!
title_short An approximation formula for n!
title_full An approximation formula for n!
title_fullStr An approximation formula for n!
title_full_unstemmed An approximation formula for n!
title_sort approximation formula for n!
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200006
work_keys_str_mv AT batirnecdet anapproximationformulaforn
AT batirnecdet approximationformulaforn
_version_ 1718439790346502144