Edge Detour Monophonic Number of a Graph

For a connected graph G of order at least two, an edge detour monophonic set of G is a set S of vertices such that every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Santhakumaran,A. P., Titus,P, Ganesamoorthy,K, Balakrishnan,P
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172013000200007
record_format dspace
spelling oai:scielo:S0716-091720130002000072013-06-26Edge Detour Monophonic Number of a GraphSanthakumaran,A. P.Titus,PGanesamoorthy,KBalakrishnan,P monophonic number edge monophonic number detour monophonic number edge detour monophonic number For a connected graph G of order at least two, an edge detour monophonic set of G is a set S of vertices such that every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G) .We determine bounds for it and characterize graphs which realize these bounds. Also, certain general properties satisfied by an edge detour monophonic set are studied. It is shown that for positive integers a, b and c with 2 ≤ a ≤ c, there exists a connected graph G such that m(G) = a, m!(G) = b and edm(G) = c,where m(G) is the monophonic number and m! (G) is the edge monophonic number of G. Also, for any integers a and b with 2 ≤ a ≤ b, there exists a connected graph G such that dm(G) = a and edm(G)= b,where dm(G) is the detour monophonic number of a graph G.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.32 n.2 20132013-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200007en10.4067/S0716-09172013000200007
institution Scielo Chile
collection Scielo Chile
language English
topic monophonic number
edge monophonic number
detour monophonic number
edge detour monophonic number
spellingShingle monophonic number
edge monophonic number
detour monophonic number
edge detour monophonic number
Santhakumaran,A. P.
Titus,P
Ganesamoorthy,K
Balakrishnan,P
Edge Detour Monophonic Number of a Graph
description For a connected graph G of order at least two, an edge detour monophonic set of G is a set S of vertices such that every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G) .We determine bounds for it and characterize graphs which realize these bounds. Also, certain general properties satisfied by an edge detour monophonic set are studied. It is shown that for positive integers a, b and c with 2 ≤ a ≤ c, there exists a connected graph G such that m(G) = a, m!(G) = b and edm(G) = c,where m(G) is the monophonic number and m! (G) is the edge monophonic number of G. Also, for any integers a and b with 2 ≤ a ≤ b, there exists a connected graph G such that dm(G) = a and edm(G)= b,where dm(G) is the detour monophonic number of a graph G.
author Santhakumaran,A. P.
Titus,P
Ganesamoorthy,K
Balakrishnan,P
author_facet Santhakumaran,A. P.
Titus,P
Ganesamoorthy,K
Balakrishnan,P
author_sort Santhakumaran,A. P.
title Edge Detour Monophonic Number of a Graph
title_short Edge Detour Monophonic Number of a Graph
title_full Edge Detour Monophonic Number of a Graph
title_fullStr Edge Detour Monophonic Number of a Graph
title_full_unstemmed Edge Detour Monophonic Number of a Graph
title_sort edge detour monophonic number of a graph
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200007
work_keys_str_mv AT santhakumaranap edgedetourmonophonicnumberofagraph
AT titusp edgedetourmonophonicnumberofagraph
AT ganesamoorthyk edgedetourmonophonicnumberofagraph
AT balakrishnanp edgedetourmonophonicnumberofagraph
_version_ 1718439790613889024