Edge Detour Monophonic Number of a Graph
For a connected graph G of order at least two, an edge detour monophonic set of G is a set S of vertices such that every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172013000200007 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720130002000072013-06-26Edge Detour Monophonic Number of a GraphSanthakumaran,A. P.Titus,PGanesamoorthy,KBalakrishnan,P monophonic number edge monophonic number detour monophonic number edge detour monophonic number For a connected graph G of order at least two, an edge detour monophonic set of G is a set S of vertices such that every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G) .We determine bounds for it and characterize graphs which realize these bounds. Also, certain general properties satisfied by an edge detour monophonic set are studied. It is shown that for positive integers a, b and c with 2 ≤ a ≤ c, there exists a connected graph G such that m(G) = a, m!(G) = b and edm(G) = c,where m(G) is the monophonic number and m! (G) is the edge monophonic number of G. Also, for any integers a and b with 2 ≤ a ≤ b, there exists a connected graph G such that dm(G) = a and edm(G)= b,where dm(G) is the detour monophonic number of a graph G.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.32 n.2 20132013-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200007en10.4067/S0716-09172013000200007 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
monophonic number edge monophonic number detour monophonic number edge detour monophonic number |
spellingShingle |
monophonic number edge monophonic number detour monophonic number edge detour monophonic number Santhakumaran,A. P. Titus,P Ganesamoorthy,K Balakrishnan,P Edge Detour Monophonic Number of a Graph |
description |
For a connected graph G of order at least two, an edge detour monophonic set of G is a set S of vertices such that every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G) .We determine bounds for it and characterize graphs which realize these bounds. Also, certain general properties satisfied by an edge detour monophonic set are studied. It is shown that for positive integers a, b and c with 2 ≤ a ≤ c, there exists a connected graph G such that m(G) = a, m!(G) = b and edm(G) = c,where m(G) is the monophonic number and m! (G) is the edge monophonic number of G. Also, for any integers a and b with 2 ≤ a ≤ b, there exists a connected graph G such that dm(G) = a and edm(G)= b,where dm(G) is the detour monophonic number of a graph G. |
author |
Santhakumaran,A. P. Titus,P Ganesamoorthy,K Balakrishnan,P |
author_facet |
Santhakumaran,A. P. Titus,P Ganesamoorthy,K Balakrishnan,P |
author_sort |
Santhakumaran,A. P. |
title |
Edge Detour Monophonic Number of a Graph |
title_short |
Edge Detour Monophonic Number of a Graph |
title_full |
Edge Detour Monophonic Number of a Graph |
title_fullStr |
Edge Detour Monophonic Number of a Graph |
title_full_unstemmed |
Edge Detour Monophonic Number of a Graph |
title_sort |
edge detour monophonic number of a graph |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000200007 |
work_keys_str_mv |
AT santhakumaranap edgedetourmonophonicnumberofagraph AT titusp edgedetourmonophonicnumberofagraph AT ganesamoorthyk edgedetourmonophonicnumberofagraph AT balakrishnanp edgedetourmonophonicnumberofagraph |
_version_ |
1718439790613889024 |