Connected edge monophonic number of a graph

For a connected graph G of order n,a set S of vertices is called an edge monophonic set of G if every edge of G lies on a monophonic path joining some pair of vertices in S, and the edge monophonic number m e(G) is the minimum cardinality of an edge monophonic set. An edge monophonic set S of G is a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Santhakumaran,A P, Titus,P., Balakrishnan,P.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000300002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172013000300002
record_format dspace
spelling oai:scielo:S0716-091720130003000022013-09-02Connected edge monophonic number of a graphSanthakumaran,A PTitus,P.Balakrishnan,P. Monophonic path edge monophonic number connected edge monophonic number connected edge geodetic number For a connected graph G of order n,a set S of vertices is called an edge monophonic set of G if every edge of G lies on a monophonic path joining some pair of vertices in S, and the edge monophonic number m e(G) is the minimum cardinality of an edge monophonic set. An edge monophonic set S of G is a connected edge mono-phonic set if the subgraph induced by S is connected, and the connected edge monophonic number m ce(G) is the minimum cardinality of a connected edge monophonic set of G. Graphs of order n with connected edge monophonic number 2, 3 or n are characterized. It is proved that there is no non-complete graph G of order n &gt; 3 with m e(G) = 3 and m ce(G)= 3. It is shown that for integers k,l and n with 4 < k < l < n, there exists a connected graph G of order n such that m e(G) = k and m ce(G) = l.Also, for integers j,k and l with 4 < j < k < l, there exists a connected graph G such that m e(G)= j,m ce(G)= k and g ce(G) = l,where g ce(G) is the connected edge geodetic number ofa graph G.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.32 n.3 20132013-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000300002en10.4067/S0716-09172013000300002
institution Scielo Chile
collection Scielo Chile
language English
topic Monophonic path
edge monophonic number
connected edge monophonic number
connected edge geodetic number
spellingShingle Monophonic path
edge monophonic number
connected edge monophonic number
connected edge geodetic number
Santhakumaran,A P
Titus,P.
Balakrishnan,P.
Connected edge monophonic number of a graph
description For a connected graph G of order n,a set S of vertices is called an edge monophonic set of G if every edge of G lies on a monophonic path joining some pair of vertices in S, and the edge monophonic number m e(G) is the minimum cardinality of an edge monophonic set. An edge monophonic set S of G is a connected edge mono-phonic set if the subgraph induced by S is connected, and the connected edge monophonic number m ce(G) is the minimum cardinality of a connected edge monophonic set of G. Graphs of order n with connected edge monophonic number 2, 3 or n are characterized. It is proved that there is no non-complete graph G of order n &gt; 3 with m e(G) = 3 and m ce(G)= 3. It is shown that for integers k,l and n with 4 < k < l < n, there exists a connected graph G of order n such that m e(G) = k and m ce(G) = l.Also, for integers j,k and l with 4 < j < k < l, there exists a connected graph G such that m e(G)= j,m ce(G)= k and g ce(G) = l,where g ce(G) is the connected edge geodetic number ofa graph G.
author Santhakumaran,A P
Titus,P.
Balakrishnan,P.
author_facet Santhakumaran,A P
Titus,P.
Balakrishnan,P.
author_sort Santhakumaran,A P
title Connected edge monophonic number of a graph
title_short Connected edge monophonic number of a graph
title_full Connected edge monophonic number of a graph
title_fullStr Connected edge monophonic number of a graph
title_full_unstemmed Connected edge monophonic number of a graph
title_sort connected edge monophonic number of a graph
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000300002
work_keys_str_mv AT santhakumaranap connectededgemonophonicnumberofagraph
AT titusp connectededgemonophonicnumberofagraph
AT balakrishnanp connectededgemonophonicnumberofagraph
_version_ 1718439791097282560