On the generating matrices of the Ê-Fibonacci numbers

In this paper we define some tridiagonal matrices depending of a parameter from which we will find the k-Fibonacci numbers. And from the cofactor matrix of one of these matrices we will prove some formulas for the k-Fibonacci numbers differently to the traditional form. Finally, we will study the ei...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Falcon,Sergio
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000400004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172013000400004
record_format dspace
spelling oai:scielo:S0716-091720130004000042014-09-09On the generating matrices of the Ê-Fibonacci numbersFalcon,Sergio k-Fibonacci numbers Cofactor matrix Eigenvalues. In this paper we define some tridiagonal matrices depending of a parameter from which we will find the k-Fibonacci numbers. And from the cofactor matrix of one of these matrices we will prove some formulas for the k-Fibonacci numbers differently to the traditional form. Finally, we will study the eigenvalues of these tridiagonal matrices.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.32 n.4 20132013-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000400004en10.4067/S0716-09172013000400004
institution Scielo Chile
collection Scielo Chile
language English
topic k-Fibonacci numbers
Cofactor matrix
Eigenvalues.
spellingShingle k-Fibonacci numbers
Cofactor matrix
Eigenvalues.
Falcon,Sergio
On the generating matrices of the Ê-Fibonacci numbers
description In this paper we define some tridiagonal matrices depending of a parameter from which we will find the k-Fibonacci numbers. And from the cofactor matrix of one of these matrices we will prove some formulas for the k-Fibonacci numbers differently to the traditional form. Finally, we will study the eigenvalues of these tridiagonal matrices.
author Falcon,Sergio
author_facet Falcon,Sergio
author_sort Falcon,Sergio
title On the generating matrices of the Ê-Fibonacci numbers
title_short On the generating matrices of the Ê-Fibonacci numbers
title_full On the generating matrices of the Ê-Fibonacci numbers
title_fullStr On the generating matrices of the Ê-Fibonacci numbers
title_full_unstemmed On the generating matrices of the Ê-Fibonacci numbers
title_sort on the generating matrices of the ê-fibonacci numbers
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000400004
work_keys_str_mv AT falconsergio onthegeneratingmatricesoftheefibonaccinumbers
_version_ 1718439793330749440