Some characterization theorems on dominating chromatic partition-covering number of graphs
Let G = (V, E) be a graph of order n = |V| and chromatic number (G) A dominating set D of G is called a dominating chromatic partition-cover or dcc-set, if it intersects every color class of every X-coloring of G. The minimum cardinality of a dcc-set is called the dom...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2014
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172014000100002 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720140001000022014-01-06Some characterization theorems on dominating chromatic partition-covering number of graphsMichael Raj,L. BenedictAyyaswamy,S. K. Dominating set chromatic partition dominating chromatic partition-covering number Let G = (V, E) be a graph of order n = |V| and chromatic number (G) A dominating set D of G is called a dominating chromatic partition-cover or dcc-set, if it intersects every color class of every X-coloring of G. The minimum cardinality of a dcc-set is called the dominating chromatic partition-covering number, denoted dcc(G). The dcc-saturation number equals the minimum integer i such that every vertex ν ∈ V is contained in a dcc-set of cardinality k.This number is denoted by dccs(G) In this paper we study a few properties ofthese two invariants dcc(G) and dccs(G).info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.33 n.1 20142014-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100002en10.4067/S0716-09172014000100002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Dominating set chromatic partition dominating chromatic partition-covering number |
spellingShingle |
Dominating set chromatic partition dominating chromatic partition-covering number Michael Raj,L. Benedict Ayyaswamy,S. K. Some characterization theorems on dominating chromatic partition-covering number of graphs |
description |
Let G = (V, E) be a graph of order n = |V| and chromatic number (G) A dominating set D of G is called a dominating chromatic partition-cover or dcc-set, if it intersects every color class of every X-coloring of G. The minimum cardinality of a dcc-set is called the dominating chromatic partition-covering number, denoted dcc(G). The dcc-saturation number equals the minimum integer i such that every vertex ν ∈ V is contained in a dcc-set of cardinality k.This number is denoted by dccs(G) In this paper we study a few properties ofthese two invariants dcc(G) and dccs(G). |
author |
Michael Raj,L. Benedict Ayyaswamy,S. K. |
author_facet |
Michael Raj,L. Benedict Ayyaswamy,S. K. |
author_sort |
Michael Raj,L. Benedict |
title |
Some characterization theorems on dominating chromatic partition-covering number of graphs |
title_short |
Some characterization theorems on dominating chromatic partition-covering number of graphs |
title_full |
Some characterization theorems on dominating chromatic partition-covering number of graphs |
title_fullStr |
Some characterization theorems on dominating chromatic partition-covering number of graphs |
title_full_unstemmed |
Some characterization theorems on dominating chromatic partition-covering number of graphs |
title_sort |
some characterization theorems on dominating chromatic partition-covering number of graphs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2014 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100002 |
work_keys_str_mv |
AT michaelrajlbenedict somecharacterizationtheoremsondominatingchromaticpartitioncoveringnumberofgraphs AT ayyaswamysk somecharacterizationtheoremsondominatingchromaticpartitioncoveringnumberofgraphs |
_version_ |
1718439794712772608 |