Some characterization theorems on dominating chromatic partition-covering number of graphs

Let G = (V, E) be a graph of order n = |V| and chromatic number (G) A dominating set D of G is called a dominating chromatic partition-cover or dcc-set, if it intersects every color class of every X-coloring of G. The minimum cardinality of a dcc-set is called the dom...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michael Raj,L. Benedict, Ayyaswamy,S. K.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172014000100002
record_format dspace
spelling oai:scielo:S0716-091720140001000022014-01-06Some characterization theorems on dominating chromatic partition-covering number of graphsMichael Raj,L. BenedictAyyaswamy,S. K. Dominating set chromatic partition dominating chromatic partition-covering number Let G = (V, E) be a graph of order n = |V| and chromatic number (G) A dominating set D of G is called a dominating chromatic partition-cover or dcc-set, if it intersects every color class of every X-coloring of G. The minimum cardinality of a dcc-set is called the dominating chromatic partition-covering number, denoted dcc(G). The dcc-saturation number equals the minimum integer i such that every vertex ν ∈ V is contained in a dcc-set of cardinality k.This number is denoted by dccs(G) In this paper we study a few properties ofthese two invariants dcc(G) and dccs(G).info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.33 n.1 20142014-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100002en10.4067/S0716-09172014000100002
institution Scielo Chile
collection Scielo Chile
language English
topic Dominating set
chromatic partition
dominating chromatic partition-covering number
spellingShingle Dominating set
chromatic partition
dominating chromatic partition-covering number
Michael Raj,L. Benedict
Ayyaswamy,S. K.
Some characterization theorems on dominating chromatic partition-covering number of graphs
description Let G = (V, E) be a graph of order n = |V| and chromatic number (G) A dominating set D of G is called a dominating chromatic partition-cover or dcc-set, if it intersects every color class of every X-coloring of G. The minimum cardinality of a dcc-set is called the dominating chromatic partition-covering number, denoted dcc(G). The dcc-saturation number equals the minimum integer i such that every vertex ν ∈ V is contained in a dcc-set of cardinality k.This number is denoted by dccs(G) In this paper we study a few properties ofthese two invariants dcc(G) and dccs(G).
author Michael Raj,L. Benedict
Ayyaswamy,S. K.
author_facet Michael Raj,L. Benedict
Ayyaswamy,S. K.
author_sort Michael Raj,L. Benedict
title Some characterization theorems on dominating chromatic partition-covering number of graphs
title_short Some characterization theorems on dominating chromatic partition-covering number of graphs
title_full Some characterization theorems on dominating chromatic partition-covering number of graphs
title_fullStr Some characterization theorems on dominating chromatic partition-covering number of graphs
title_full_unstemmed Some characterization theorems on dominating chromatic partition-covering number of graphs
title_sort some characterization theorems on dominating chromatic partition-covering number of graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2014
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100002
work_keys_str_mv AT michaelrajlbenedict somecharacterizationtheoremsondominatingchromaticpartitioncoveringnumberofgraphs
AT ayyaswamysk somecharacterizationtheoremsondominatingchromaticpartitioncoveringnumberofgraphs
_version_ 1718439794712772608