Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuș-Srivastava Polynomials
In their recent investigation involving differential operators for the generalized Lagrange polynomials, Chan et. al. [3] encountered and proved a certain summation identity and several other results for the Lagrange polynomials in several variables, which are popularly known in the literature as th...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2014
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In their recent investigation involving differential operators for the generalized Lagrange polynomials, Chan et. al. [3] encountered and proved a certain summation identity and several other results for the Lagrange polynomials in several variables, which are popularly known in the literature as the Chan-Chyan-Srivastava polynomials. These multivariable polynomials have been studied systematically and extensively in the literature ever since then (see, for example, [1], [4], [9], [11], [12] and [13]). In the present paper, we investigate umbral calculus presentations ofthe Chan-Chyan-Srivastava polynomials and also of their substantially more general form, the Erkus-Srivastava polynomials [9]. Some other closely-related results are also considered. |
---|