Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuș-Srivastava Polynomials
In their recent investigation involving differential operators for the generalized Lagrange polynomials, Chan et. al. [3] encountered and proved a certain summation identity and several other results for the Lagrange polynomials in several variables, which are popularly known in the literature as th...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2014
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172014000100006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720140001000062014-01-06Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuș-Srivastava PolynomialsSrivastava,H. MNisar,K. SKhan,Mumtaz Ahmad Lagrange polynomials Hermite-Kampe de Feriet polynomials Lagrange-Hermite polynomials Chan-Chyan-Srivastava polynomials Erkus-Srivastava polynomials Umbral calculus Pochhammer symbol Multinomial theorem and multinomial coefficients Principle of monoumbrality Monoumbral expansions In their recent investigation involving differential operators for the generalized Lagrange polynomials, Chan et. al. [3] encountered and proved a certain summation identity and several other results for the Lagrange polynomials in several variables, which are popularly known in the literature as the Chan-Chyan-Srivastava polynomials. These multivariable polynomials have been studied systematically and extensively in the literature ever since then (see, for example, [1], [4], [9], [11], [12] and [13]). In the present paper, we investigate umbral calculus presentations ofthe Chan-Chyan-Srivastava polynomials and also of their substantially more general form, the Erkus-Srivastava polynomials [9]. Some other closely-related results are also considered.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.33 n.1 20142014-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100006en10.4067/S0716-09172014000100006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Lagrange polynomials Hermite-Kampe de Feriet polynomials Lagrange-Hermite polynomials Chan-Chyan-Srivastava polynomials Erkus-Srivastava polynomials Umbral calculus Pochhammer symbol Multinomial theorem and multinomial coefficients Principle of monoumbrality Monoumbral expansions |
spellingShingle |
Lagrange polynomials Hermite-Kampe de Feriet polynomials Lagrange-Hermite polynomials Chan-Chyan-Srivastava polynomials Erkus-Srivastava polynomials Umbral calculus Pochhammer symbol Multinomial theorem and multinomial coefficients Principle of monoumbrality Monoumbral expansions Srivastava,H. M Nisar,K. S Khan,Mumtaz Ahmad Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuș-Srivastava Polynomials |
description |
In their recent investigation involving differential operators for the generalized Lagrange polynomials, Chan et. al. [3] encountered and proved a certain summation identity and several other results for the Lagrange polynomials in several variables, which are popularly known in the literature as the Chan-Chyan-Srivastava polynomials. These multivariable polynomials have been studied systematically and extensively in the literature ever since then (see, for example, [1], [4], [9], [11], [12] and [13]). In the present paper, we investigate umbral calculus presentations ofthe Chan-Chyan-Srivastava polynomials and also of their substantially more general form, the Erkus-Srivastava polynomials [9]. Some other closely-related results are also considered. |
author |
Srivastava,H. M Nisar,K. S Khan,Mumtaz Ahmad |
author_facet |
Srivastava,H. M Nisar,K. S Khan,Mumtaz Ahmad |
author_sort |
Srivastava,H. M |
title |
Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuș-Srivastava Polynomials |
title_short |
Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuș-Srivastava Polynomials |
title_full |
Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuș-Srivastava Polynomials |
title_fullStr |
Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuș-Srivastava Polynomials |
title_full_unstemmed |
Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuș-Srivastava Polynomials |
title_sort |
some umbral calculus presentations of the chan-chyan-srivastava polynomials and the erkuș-srivastava polynomials |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2014 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100006 |
work_keys_str_mv |
AT srivastavahm someumbralcalculuspresentationsofthechanchyansrivastavapolynomialsandtheerku537srivastavapolynomials AT nisarks someumbralcalculuspresentationsofthechanchyansrivastavapolynomialsandtheerku537srivastavapolynomials AT khanmumtazahmad someumbralcalculuspresentationsofthechanchyansrivastavapolynomialsandtheerku537srivastavapolynomials |
_version_ |
1718439795590430720 |