Upper Edge Detour Monophonic Number of a Graph
For a connected graph G of order at least two, a path P is called a monophonic path if it is a chordless path. A longest x - y monophonic path is called an x - y detour monophonic path. A set S of vertices of G is an edge detour monophonic set of G if every edge of G lies on a detour monophonic path...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2014
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000200004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172014000200004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720140002000042018-10-30Upper Edge Detour Monophonic Number of a GraphTitus,PGanesamoorthy,K edge detour monophonic set edge detour monophonic number minimal edge detour monophonic set upper edge detour mono-phonic set upper edge detour monophonic number. For a connected graph G of order at least two, a path P is called a monophonic path if it is a chordless path. A longest x - y monophonic path is called an x - y detour monophonic path. A set S of vertices of G is an edge detour monophonic set of G if every edge of G lies on a detour monophonic path joining some pair of vertices in S.The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G).An edge detour monophonic set S ofG is called a minimal edge detour mono-phonic set ifno proper subset ofS is an edge detour monophonic set of G. The upper edge detour monophonic number of G, denoted by edm+(G),is defined as the maximum cardinality of a minimal edge detour monophonic set ofG. We determine bounds for it and characterize graphs which realize these bounds. For any three positive integers b, c and n with 2 ≤ b ≤ n ≤ c, there is a connected graph G with edm(G) = b, edm+(G) = c and a minimal edge detour monophonic set of cardinality n.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.33 n.2 20142014-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000200004en10.4067/S0716-09172014000200004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
edge detour monophonic set edge detour monophonic number minimal edge detour monophonic set upper edge detour mono-phonic set upper edge detour monophonic number. |
spellingShingle |
edge detour monophonic set edge detour monophonic number minimal edge detour monophonic set upper edge detour mono-phonic set upper edge detour monophonic number. Titus,P Ganesamoorthy,K Upper Edge Detour Monophonic Number of a Graph |
description |
For a connected graph G of order at least two, a path P is called a monophonic path if it is a chordless path. A longest x - y monophonic path is called an x - y detour monophonic path. A set S of vertices of G is an edge detour monophonic set of G if every edge of G lies on a detour monophonic path joining some pair of vertices in S.The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G).An edge detour monophonic set S ofG is called a minimal edge detour mono-phonic set ifno proper subset ofS is an edge detour monophonic set of G. The upper edge detour monophonic number of G, denoted by edm+(G),is defined as the maximum cardinality of a minimal edge detour monophonic set ofG. We determine bounds for it and characterize graphs which realize these bounds. For any three positive integers b, c and n with 2 ≤ b ≤ n ≤ c, there is a connected graph G with edm(G) = b, edm+(G) = c and a minimal edge detour monophonic set of cardinality n. |
author |
Titus,P Ganesamoorthy,K |
author_facet |
Titus,P Ganesamoorthy,K |
author_sort |
Titus,P |
title |
Upper Edge Detour Monophonic Number of a Graph |
title_short |
Upper Edge Detour Monophonic Number of a Graph |
title_full |
Upper Edge Detour Monophonic Number of a Graph |
title_fullStr |
Upper Edge Detour Monophonic Number of a Graph |
title_full_unstemmed |
Upper Edge Detour Monophonic Number of a Graph |
title_sort |
upper edge detour monophonic number of a graph |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2014 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000200004 |
work_keys_str_mv |
AT titusp upperedgedetourmonophonicnumberofagraph AT ganesamoorthyk upperedgedetourmonophonicnumberofagraph |
_version_ |
1718439797630959616 |