Strongly Bounded Partial Sums
If λ is a scalar sequence space, a series P Zj in a topological vector space Z is λ multiplier convergent in Z if the series P ∞J =1 tj Zj converges in Z for every t = {tj} ∈ λ-If λ satisfies appropriate conditions, a series in a locally convex...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2014
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000200006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | If λ is a scalar sequence space, a series P Zj in a topological vector space Z is λ multiplier convergent in Z if the series P ∞J =1 tj Zj converges in Z for every t = {tj} ∈ λ-If λ satisfies appropriate conditions, a series in a locally convex space X which is λ multiplier convergent in the weak topology is λ multiplier convergent in the original topology ofthe space (the Orlicz-Pettis Theorem) but may fail to be λ multiplier convergent in the strong topology of the space. However, we show under apprpriate conditions on the multiplier space λ that the series will have strongly bounded partial sums. |
---|