L(1,1)-Labeling of Direct Product of any Path and Cycle

Suppose that [n] = {0, 1, 2,...,n} is a set of non-negative integers and h,k G [n].The L (h, k)-labeling of graph G is the function l : V(G) - [n] such that |l(u) - l(v)| > h if the distance d(u,v) between u and v is 1 and |l(u) - l(v)| > k if d(u,v) = 2. Let L(V(G)) = {l(v): v G V(G)} and let...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Olayide Ajayi,Deborah, Adefokun,Charles
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000400002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172014000400002
record_format dspace
spelling oai:scielo:S0716-091720140004000022015-01-19L(1,1)-Labeling of Direct Product of any Path and CycleOlayide Ajayi,DeborahAdefokun,Charles L(1,1)-labeling D-2 Coloring Direct Product of Graphs Cross Product of Graphs Path and Cycle. Suppose that [n] = {0, 1, 2,...,n} is a set of non-negative integers and h,k G [n].The L (h, k)-labeling of graph G is the function l : V(G) - [n] such that |l(u) - l(v)| > h if the distance d(u,v) between u and v is 1 and |l(u) - l(v)| > k if d(u,v) = 2. Let L(V(G)) = {l(v): v G V(G)} and let p be the maximum value of L(V(G)). Then p is called Xi^-number of G if p is the least possible member of [n] such that G maintains an L(h, k) - labeling. In this paper, we establish X} - numbers of Pm X Pn and Pm X Cn graphs for all m,n > 2.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.33 n.4 20142014-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000400002en10.4067/S0716-09172014000400002
institution Scielo Chile
collection Scielo Chile
language English
topic L(1,1)-labeling
D-2 Coloring
Direct Product of Graphs
Cross Product of Graphs
Path and Cycle.
spellingShingle L(1,1)-labeling
D-2 Coloring
Direct Product of Graphs
Cross Product of Graphs
Path and Cycle.
Olayide Ajayi,Deborah
Adefokun,Charles
L(1,1)-Labeling of Direct Product of any Path and Cycle
description Suppose that [n] = {0, 1, 2,...,n} is a set of non-negative integers and h,k G [n].The L (h, k)-labeling of graph G is the function l : V(G) - [n] such that |l(u) - l(v)| > h if the distance d(u,v) between u and v is 1 and |l(u) - l(v)| > k if d(u,v) = 2. Let L(V(G)) = {l(v): v G V(G)} and let p be the maximum value of L(V(G)). Then p is called Xi^-number of G if p is the least possible member of [n] such that G maintains an L(h, k) - labeling. In this paper, we establish X} - numbers of Pm X Pn and Pm X Cn graphs for all m,n > 2.
author Olayide Ajayi,Deborah
Adefokun,Charles
author_facet Olayide Ajayi,Deborah
Adefokun,Charles
author_sort Olayide Ajayi,Deborah
title L(1,1)-Labeling of Direct Product of any Path and Cycle
title_short L(1,1)-Labeling of Direct Product of any Path and Cycle
title_full L(1,1)-Labeling of Direct Product of any Path and Cycle
title_fullStr L(1,1)-Labeling of Direct Product of any Path and Cycle
title_full_unstemmed L(1,1)-Labeling of Direct Product of any Path and Cycle
title_sort l(1,1)-labeling of direct product of any path and cycle
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2014
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000400002
work_keys_str_mv AT olayideajayideborah l11labelingofdirectproductofanypathandcycle
AT adefokuncharles l11labelingofdirectproductofanypathandcycle
_version_ 1718439800663441408