L(1,1)-Labeling of Direct Product of any Path and Cycle
Suppose that [n] = {0, 1, 2,...,n} is a set of non-negative integers and h,k G [n].The L (h, k)-labeling of graph G is the function l : V(G) - [n] such that |l(u) - l(v)| > h if the distance d(u,v) between u and v is 1 and |l(u) - l(v)| > k if d(u,v) = 2. Let L(V(G)) = {l(v): v G V(G)} and let...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2014
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000400002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172014000400002 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720140004000022015-01-19L(1,1)-Labeling of Direct Product of any Path and CycleOlayide Ajayi,DeborahAdefokun,Charles L(1,1)-labeling D-2 Coloring Direct Product of Graphs Cross Product of Graphs Path and Cycle. Suppose that [n] = {0, 1, 2,...,n} is a set of non-negative integers and h,k G [n].The L (h, k)-labeling of graph G is the function l : V(G) - [n] such that |l(u) - l(v)| > h if the distance d(u,v) between u and v is 1 and |l(u) - l(v)| > k if d(u,v) = 2. Let L(V(G)) = {l(v): v G V(G)} and let p be the maximum value of L(V(G)). Then p is called Xi^-number of G if p is the least possible member of [n] such that G maintains an L(h, k) - labeling. In this paper, we establish X} - numbers of Pm X Pn and Pm X Cn graphs for all m,n > 2.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.33 n.4 20142014-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000400002en10.4067/S0716-09172014000400002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
L(1,1)-labeling D-2 Coloring Direct Product of Graphs Cross Product of Graphs Path and Cycle. |
spellingShingle |
L(1,1)-labeling D-2 Coloring Direct Product of Graphs Cross Product of Graphs Path and Cycle. Olayide Ajayi,Deborah Adefokun,Charles L(1,1)-Labeling of Direct Product of any Path and Cycle |
description |
Suppose that [n] = {0, 1, 2,...,n} is a set of non-negative integers and h,k G [n].The L (h, k)-labeling of graph G is the function l : V(G) - [n] such that |l(u) - l(v)| > h if the distance d(u,v) between u and v is 1 and |l(u) - l(v)| > k if d(u,v) = 2. Let L(V(G)) = {l(v): v G V(G)} and let p be the maximum value of L(V(G)). Then p is called Xi^-number of G if p is the least possible member of [n] such that G maintains an L(h, k) - labeling. In this paper, we establish X} - numbers of Pm X Pn and Pm X Cn graphs for all m,n > 2. |
author |
Olayide Ajayi,Deborah Adefokun,Charles |
author_facet |
Olayide Ajayi,Deborah Adefokun,Charles |
author_sort |
Olayide Ajayi,Deborah |
title |
L(1,1)-Labeling of Direct Product of any Path and Cycle |
title_short |
L(1,1)-Labeling of Direct Product of any Path and Cycle |
title_full |
L(1,1)-Labeling of Direct Product of any Path and Cycle |
title_fullStr |
L(1,1)-Labeling of Direct Product of any Path and Cycle |
title_full_unstemmed |
L(1,1)-Labeling of Direct Product of any Path and Cycle |
title_sort |
l(1,1)-labeling of direct product of any path and cycle |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2014 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000400002 |
work_keys_str_mv |
AT olayideajayideborah l11labelingofdirectproductofanypathandcycle AT adefokuncharles l11labelingofdirectproductofanypathandcycle |
_version_ |
1718439800663441408 |