The upper open monophonic number of a graph

For a connected graph G of order n,a subset S of vertices of G is a monophonic set of G if each vertex v in G lies on a x-y monophonic path for some elements x and y in S. The minimum cardinality of a monophonic set of G is defined as the monophonic number of G, denoted by m(G). A monophonic set of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Santhakumaran,A. P., Mahendran,M.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000400003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:For a connected graph G of order n,a subset S of vertices of G is a monophonic set of G if each vertex v in G lies on a x-y monophonic path for some elements x and y in S. The minimum cardinality of a monophonic set of G is defined as the monophonic number of G, denoted by m(G). A monophonic set of cardinality m(G) is called a m-set of G.A set S of vertices of a connected graph G is an open monophonic set of G if for each vertex v in G ,either v is an extreme vertex of G and v G S,or v is an internal vertex of a x-y mono-phonic path for some x,y G S. An open monophonic set of minimum cardinality is a minimum open monophonic set and this cardinality is the open monophonic number, om(G). An open monophonic set S of vertices in a connected graph G is a minimal open monophonic .set if no proper subset of S is an open monophonic set of G.The upper open monophonic number om+ (G) is the maximum cardinality of a minimal open monophonic set of G. The upper open monophonic numbers of certain standard graphs are determined. It is proved that for a graph G of order n, om(G) = n if and only if om+(G)= n. Graphs G with om(G) = 2 are characterized. If a graph G has a minimal open monophonic set S of cardinality 3, then S is also a minimum open monophonic set of G and om(G) = 3. For any two positive integers a and b with 4 < a < b, there exists a connected graph G with om(G) = a and om+(G) = b.