Subseries convergence in abstract duality pairs
Let E, F be sets, G an Abelian topological group and b : ExF - G. Then (E, F, G) is called an abstract triple. Let w(F, E) be the weakest toplogy on F such that the maps {b(x, ·): x G E} from F into G are continuous. A subset B C F is w(F,E) sequentially conditionally compact if every sequence {yk}...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2014
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000400007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172014000400007 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720140004000072015-01-19Subseries convergence in abstract duality pairsCho,Min-HyungRonglu,LiSwartz,CharlesLet E, F be sets, G an Abelian topological group and b : ExF - G. Then (E, F, G) is called an abstract triple. Let w(F, E) be the weakest toplogy on F such that the maps {b(x, ·): x G E} from F into G are continuous. A subset B C F is w(F,E) sequentially conditionally compact if every sequence {yk} C B has a subsequence {y nk } such that limj; b(x, y nk) exists for every x G E. It is shown that if a formal series in E is subseries convergent in the sense that for every subsequence {x nj} there is an element x G E such that Xj=! b(x nj ,y) = b(x,y) for every y G F ,then the series Xj=! b(x nj ,y) converge uniformly for y belonging to w(F, E) sequentially conditionally compact subsets ofF. This result is used to establish Orlicz-Pettis Theorems in locall convex and function spaces. Applications are also given to Uniform Boundedness Principles and continuity results for bilinear mappings.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.33 n.4 20142014-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000400007en10.4067/S0716-09172014000400007 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
description |
Let E, F be sets, G an Abelian topological group and b : ExF - G. Then (E, F, G) is called an abstract triple. Let w(F, E) be the weakest toplogy on F such that the maps {b(x, ·): x G E} from F into G are continuous. A subset B C F is w(F,E) sequentially conditionally compact if every sequence {yk} C B has a subsequence {y nk } such that limj; b(x, y nk) exists for every x G E. It is shown that if a formal series in E is subseries convergent in the sense that for every subsequence {x nj} there is an element x G E such that Xj=! b(x nj ,y) = b(x,y) for every y G F ,then the series Xj=! b(x nj ,y) converge uniformly for y belonging to w(F, E) sequentially conditionally compact subsets ofF. This result is used to establish Orlicz-Pettis Theorems in locall convex and function spaces. Applications are also given to Uniform Boundedness Principles and continuity results for bilinear mappings. |
author |
Cho,Min-Hyung Ronglu,Li Swartz,Charles |
spellingShingle |
Cho,Min-Hyung Ronglu,Li Swartz,Charles Subseries convergence in abstract duality pairs |
author_facet |
Cho,Min-Hyung Ronglu,Li Swartz,Charles |
author_sort |
Cho,Min-Hyung |
title |
Subseries convergence in abstract duality pairs |
title_short |
Subseries convergence in abstract duality pairs |
title_full |
Subseries convergence in abstract duality pairs |
title_fullStr |
Subseries convergence in abstract duality pairs |
title_full_unstemmed |
Subseries convergence in abstract duality pairs |
title_sort |
subseries convergence in abstract duality pairs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2014 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000400007 |
work_keys_str_mv |
AT chominhyung subseriesconvergenceinabstractdualitypairs AT rongluli subseriesconvergenceinabstractdualitypairs AT swartzcharles subseriesconvergenceinabstractdualitypairs |
_version_ |
1718439801836797952 |