Complementary nil vertex edge dominating sets
Dominating sets play a vital role in day-to-day life problems. For-providing effective services in a location, central points are to be identified. This can easily be achieved by graph theoretic techniques. Such graphs and relevant parameters are introduced and extensively studied. One such paramete...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000100001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172015000100001 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720150001000012015-07-13Complementary nil vertex edge dominating setsSiva Rama Raju,S. V.Nagaraja Rao,I. H. Complementary nil vertex edge domination complementary nil vertex edge domination number connected domination Dominating sets play a vital role in day-to-day life problems. For-providing effective services in a location, central points are to be identified. This can easily be achieved by graph theoretic techniques. Such graphs and relevant parameters are introduced and extensively studied. One such parameter is complementary nil vertex edge dominating set(cnved-set). A vertex edge dominating set(ved-set) of a connected graph G with vertex set V is said to be a complementary nil vertex edge dominating set(cnved-Set) of G if and only if V - D is not a ved-set of G. A cnved-set of minimum cardinality is called a minimum cnved-set(mcnved-set)of G and this minimum cardinality is called the complementary nil vertex-edge domination number of G and is denoted by γcnve(G). We have given a characterization result for a ved-set to be a cnved-set and also bounds for this parameter are obtained.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.34 n.1 20152015-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000100001en10.4067/S0716-09172015000100001 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Complementary nil vertex edge domination complementary nil vertex edge domination number connected domination |
spellingShingle |
Complementary nil vertex edge domination complementary nil vertex edge domination number connected domination Siva Rama Raju,S. V. Nagaraja Rao,I. H. Complementary nil vertex edge dominating sets |
description |
Dominating sets play a vital role in day-to-day life problems. For-providing effective services in a location, central points are to be identified. This can easily be achieved by graph theoretic techniques. Such graphs and relevant parameters are introduced and extensively studied. One such parameter is complementary nil vertex edge dominating set(cnved-set). A vertex edge dominating set(ved-set) of a connected graph G with vertex set V is said to be a complementary nil vertex edge dominating set(cnved-Set) of G if and only if V - D is not a ved-set of G. A cnved-set of minimum cardinality is called a minimum cnved-set(mcnved-set)of G and this minimum cardinality is called the complementary nil vertex-edge domination number of G and is denoted by γcnve(G). We have given a characterization result for a ved-set to be a cnved-set and also bounds for this parameter are obtained. |
author |
Siva Rama Raju,S. V. Nagaraja Rao,I. H. |
author_facet |
Siva Rama Raju,S. V. Nagaraja Rao,I. H. |
author_sort |
Siva Rama Raju,S. V. |
title |
Complementary nil vertex edge dominating sets |
title_short |
Complementary nil vertex edge dominating sets |
title_full |
Complementary nil vertex edge dominating sets |
title_fullStr |
Complementary nil vertex edge dominating sets |
title_full_unstemmed |
Complementary nil vertex edge dominating sets |
title_sort |
complementary nil vertex edge dominating sets |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2015 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000100001 |
work_keys_str_mv |
AT sivaramarajusv complementarynilvertexedgedominatingsets AT nagarajaraoih complementarynilvertexedgedominatingsets |
_version_ |
1718439802469089280 |