A note on complementary tree domination number of a tree
A complementary tree dominating set of a graph G, is a set D of vertices of G such that D is a dominating set and the induced sub graph (V \ D) is a tree. The complementary tree domination number of a graph G, denoted by γctd(G), is the minimum cardinality of a complementary tree dominating...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000200002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172015000200002 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720150002000022015-10-20A note on complementary tree domination number of a treeKrishnakumari,BVenkatakrishnan,Y. B Dominating set Complementary tree dominating set edge-vertex dominating set tree A complementary tree dominating set of a graph G, is a set D of vertices of G such that D is a dominating set and the induced sub graph (V \ D) is a tree. The complementary tree domination number of a graph G, denoted by γctd(G), is the minimum cardinality of a complementary tree dominating set of G. An edge-vertex dominating set of a graph G is a set D of edges of G such that every vertex of G is incident with an edge of D or incident with an edge adjacent to an edge of D. The edge-vertex domination number of a graph, denoted by γev(G), is the minimum cardinality of an edge-vertex dominating set of G. We characterize trees for which γ(T) = γctd(T) and γctd(T) = γev(T)+ 1.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.34 n.2 20152015-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000200002en10.4067/S0716-09172015000200002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Dominating set Complementary tree dominating set edge-vertex dominating set tree |
spellingShingle |
Dominating set Complementary tree dominating set edge-vertex dominating set tree Krishnakumari,B Venkatakrishnan,Y. B A note on complementary tree domination number of a tree |
description |
A complementary tree dominating set of a graph G, is a set D of vertices of G such that D is a dominating set and the induced sub graph (V \ D) is a tree. The complementary tree domination number of a graph G, denoted by γctd(G), is the minimum cardinality of a complementary tree dominating set of G. An edge-vertex dominating set of a graph G is a set D of edges of G such that every vertex of G is incident with an edge of D or incident with an edge adjacent to an edge of D. The edge-vertex domination number of a graph, denoted by γev(G), is the minimum cardinality of an edge-vertex dominating set of G. We characterize trees for which γ(T) = γctd(T) and γctd(T) = γev(T)+ 1. |
author |
Krishnakumari,B Venkatakrishnan,Y. B |
author_facet |
Krishnakumari,B Venkatakrishnan,Y. B |
author_sort |
Krishnakumari,B |
title |
A note on complementary tree domination number of a tree |
title_short |
A note on complementary tree domination number of a tree |
title_full |
A note on complementary tree domination number of a tree |
title_fullStr |
A note on complementary tree domination number of a tree |
title_full_unstemmed |
A note on complementary tree domination number of a tree |
title_sort |
note on complementary tree domination number of a tree |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2015 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000200002 |
work_keys_str_mv |
AT krishnakumarib anoteoncomplementarytreedominationnumberofatree AT venkatakrishnanyb anoteoncomplementarytreedominationnumberofatree AT krishnakumarib noteoncomplementarytreedominationnumberofatree AT venkatakrishnanyb noteoncomplementarytreedominationnumberofatree |
_version_ |
1718439804438315008 |