A note on complementary tree domination number of a tree

A complementary tree dominating set of a graph G, is a set D of vertices of G such that D is a dominating set and the induced sub graph (V \ D) is a tree. The complementary tree domination number of a graph G, denoted by γctd(G), is the minimum cardinality of a complementary tree dominating...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Krishnakumari,B, Venkatakrishnan,Y. B
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000200002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172015000200002
record_format dspace
spelling oai:scielo:S0716-091720150002000022015-10-20A note on complementary tree domination number of a treeKrishnakumari,BVenkatakrishnan,Y. B Dominating set Complementary tree dominating set edge-vertex dominating set tree A complementary tree dominating set of a graph G, is a set D of vertices of G such that D is a dominating set and the induced sub graph (V \ D) is a tree. The complementary tree domination number of a graph G, denoted by γctd(G), is the minimum cardinality of a complementary tree dominating set of G. An edge-vertex dominating set of a graph G is a set D of edges of G such that every vertex of G is incident with an edge of D or incident with an edge adjacent to an edge of D. The edge-vertex domination number of a graph, denoted by γev(G), is the minimum cardinality of an edge-vertex dominating set of G. We characterize trees for which γ(T) = γctd(T) and γctd(T) = γev(T)+ 1.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.34 n.2 20152015-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000200002en10.4067/S0716-09172015000200002
institution Scielo Chile
collection Scielo Chile
language English
topic Dominating set
Complementary tree dominating set
edge-vertex dominating set
tree
spellingShingle Dominating set
Complementary tree dominating set
edge-vertex dominating set
tree
Krishnakumari,B
Venkatakrishnan,Y. B
A note on complementary tree domination number of a tree
description A complementary tree dominating set of a graph G, is a set D of vertices of G such that D is a dominating set and the induced sub graph (V \ D) is a tree. The complementary tree domination number of a graph G, denoted by γctd(G), is the minimum cardinality of a complementary tree dominating set of G. An edge-vertex dominating set of a graph G is a set D of edges of G such that every vertex of G is incident with an edge of D or incident with an edge adjacent to an edge of D. The edge-vertex domination number of a graph, denoted by γev(G), is the minimum cardinality of an edge-vertex dominating set of G. We characterize trees for which γ(T) = γctd(T) and γctd(T) = γev(T)+ 1.
author Krishnakumari,B
Venkatakrishnan,Y. B
author_facet Krishnakumari,B
Venkatakrishnan,Y. B
author_sort Krishnakumari,B
title A note on complementary tree domination number of a tree
title_short A note on complementary tree domination number of a tree
title_full A note on complementary tree domination number of a tree
title_fullStr A note on complementary tree domination number of a tree
title_full_unstemmed A note on complementary tree domination number of a tree
title_sort note on complementary tree domination number of a tree
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2015
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000200002
work_keys_str_mv AT krishnakumarib anoteoncomplementarytreedominationnumberofatree
AT venkatakrishnanyb anoteoncomplementarytreedominationnumberofatree
AT krishnakumarib noteoncomplementarytreedominationnumberofatree
AT venkatakrishnanyb noteoncomplementarytreedominationnumberofatree
_version_ 1718439804438315008