Hypo-k-Totally Magic Cordial Labeling of Graphs

A graph G is said to be hypo-k-totally magic cordial if G - {v} is k-totally magic cordial for each vertex v in V(G). In this paper, we establish that cycle, complete graph, complete bipartite graph and wheel graph admit hypo-k-totally magic cordial labeling and some families of graphs do not admit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P., Angel Benseera,N., Lau,Gee-Choon
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172015000400004
record_format dspace
spelling oai:scielo:S0716-091720150004000042016-10-25Hypo-k-Totally Magic Cordial Labeling of GraphsJeyanthi,P.Angel Benseera,N.Lau,Gee-Choon k-totally magic cordial labeling hypo-k-totally magic cordial labeling hypo-k-totally magic cordial graph complete graph complete bipartite graph wheel graph. A graph G is said to be hypo-k-totally magic cordial if G - {v} is k-totally magic cordial for each vertex v in V(G). In this paper, we establish that cycle, complete graph, complete bipartite graph and wheel graph admit hypo-k-totally magic cordial labeling and some families of graphs do not admit hypo-k-totally magic cordial labeling.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.34 n.4 20152015-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400004en10.4067/S0716-09172015000400004
institution Scielo Chile
collection Scielo Chile
language English
topic k-totally magic cordial labeling
hypo-k-totally magic cordial labeling
hypo-k-totally magic cordial graph
complete graph
complete bipartite graph
wheel graph.
spellingShingle k-totally magic cordial labeling
hypo-k-totally magic cordial labeling
hypo-k-totally magic cordial graph
complete graph
complete bipartite graph
wheel graph.
Jeyanthi,P.
Angel Benseera,N.
Lau,Gee-Choon
Hypo-k-Totally Magic Cordial Labeling of Graphs
description A graph G is said to be hypo-k-totally magic cordial if G - {v} is k-totally magic cordial for each vertex v in V(G). In this paper, we establish that cycle, complete graph, complete bipartite graph and wheel graph admit hypo-k-totally magic cordial labeling and some families of graphs do not admit hypo-k-totally magic cordial labeling.
author Jeyanthi,P.
Angel Benseera,N.
Lau,Gee-Choon
author_facet Jeyanthi,P.
Angel Benseera,N.
Lau,Gee-Choon
author_sort Jeyanthi,P.
title Hypo-k-Totally Magic Cordial Labeling of Graphs
title_short Hypo-k-Totally Magic Cordial Labeling of Graphs
title_full Hypo-k-Totally Magic Cordial Labeling of Graphs
title_fullStr Hypo-k-Totally Magic Cordial Labeling of Graphs
title_full_unstemmed Hypo-k-Totally Magic Cordial Labeling of Graphs
title_sort hypo-k-totally magic cordial labeling of graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2015
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400004
work_keys_str_mv AT jeyanthip hypoktotallymagiccordiallabelingofgraphs
AT angelbenseeran hypoktotallymagiccordiallabelingofgraphs
AT laugeechoon hypoktotallymagiccordiallabelingofgraphs
_version_ 1718439808846528512