Hypo-k-Totally Magic Cordial Labeling of Graphs
A graph G is said to be hypo-k-totally magic cordial if G - {v} is k-totally magic cordial for each vertex v in V(G). In this paper, we establish that cycle, complete graph, complete bipartite graph and wheel graph admit hypo-k-totally magic cordial labeling and some families of graphs do not admit...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172015000400004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720150004000042016-10-25Hypo-k-Totally Magic Cordial Labeling of GraphsJeyanthi,P.Angel Benseera,N.Lau,Gee-Choon k-totally magic cordial labeling hypo-k-totally magic cordial labeling hypo-k-totally magic cordial graph complete graph complete bipartite graph wheel graph. A graph G is said to be hypo-k-totally magic cordial if G - {v} is k-totally magic cordial for each vertex v in V(G). In this paper, we establish that cycle, complete graph, complete bipartite graph and wheel graph admit hypo-k-totally magic cordial labeling and some families of graphs do not admit hypo-k-totally magic cordial labeling.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.34 n.4 20152015-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400004en10.4067/S0716-09172015000400004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
k-totally magic cordial labeling hypo-k-totally magic cordial labeling hypo-k-totally magic cordial graph complete graph complete bipartite graph wheel graph. |
spellingShingle |
k-totally magic cordial labeling hypo-k-totally magic cordial labeling hypo-k-totally magic cordial graph complete graph complete bipartite graph wheel graph. Jeyanthi,P. Angel Benseera,N. Lau,Gee-Choon Hypo-k-Totally Magic Cordial Labeling of Graphs |
description |
A graph G is said to be hypo-k-totally magic cordial if G - {v} is k-totally magic cordial for each vertex v in V(G). In this paper, we establish that cycle, complete graph, complete bipartite graph and wheel graph admit hypo-k-totally magic cordial labeling and some families of graphs do not admit hypo-k-totally magic cordial labeling. |
author |
Jeyanthi,P. Angel Benseera,N. Lau,Gee-Choon |
author_facet |
Jeyanthi,P. Angel Benseera,N. Lau,Gee-Choon |
author_sort |
Jeyanthi,P. |
title |
Hypo-k-Totally Magic Cordial Labeling of Graphs |
title_short |
Hypo-k-Totally Magic Cordial Labeling of Graphs |
title_full |
Hypo-k-Totally Magic Cordial Labeling of Graphs |
title_fullStr |
Hypo-k-Totally Magic Cordial Labeling of Graphs |
title_full_unstemmed |
Hypo-k-Totally Magic Cordial Labeling of Graphs |
title_sort |
hypo-k-totally magic cordial labeling of graphs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2015 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400004 |
work_keys_str_mv |
AT jeyanthip hypoktotallymagiccordiallabelingofgraphs AT angelbenseeran hypoktotallymagiccordiallabelingofgraphs AT laugeechoon hypoktotallymagiccordiallabelingofgraphs |
_version_ |
1718439808846528512 |