Computing the maximal signless Laplacian index among graphs of prescribed order and diameter

A bug Bug p,r1r2 is a graph obtained from a complete graph Kp by deleting an edge uv and attaching the paths Pri and Pr2 by one of their end vertices at u and v, respectively. Let Q(G) be the signless Laplacian matrix of a graph G and q1(G) be the spectral radius of Q(G). It is known that the bug<...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Abreu,Nair, Lenes,Eber, Rojo,Oscar
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2015
Materias:
bug
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A bug Bug p,r1r2 is a graph obtained from a complete graph Kp by deleting an edge uv and attaching the paths Pri and Pr2 by one of their end vertices at u and v, respectively. Let Q(G) be the signless Laplacian matrix of a graph G and q1(G) be the spectral radius of Q(G). It is known that the bug<img src="http:/fbpe/img/proy/v34n4//art06_fig1.jpg" width="300" height="59"> maximizes q1(G) among all graphs G of order n and diameter d. For a bug B of order n and diameter d, n - d is an eigenvalue of Q(B) with multiplicity n - d - 1. In this paper, we prove that remainder d +1 eigenvalues of Q(B), among them q1(B), can be computed as the eigenvalues of a symmetric tridiagonal matrix of order d +1. Finally, we show that q1(B0) can be computed as the largest eigenvalue of a symmetric tridiagonal matrix of order<img src="http:/fbpe/img/proy/v34n4//art06_fig2.jpg" width="80" height="56"> whenever d is even.