Computing the maximal signless Laplacian index among graphs of prescribed order and diameter
A bug Bug p,r1r2 is a graph obtained from a complete graph Kp by deleting an edge uv and attaching the paths Pri and Pr2 by one of their end vertices at u and v, respectively. Let Q(G) be the signless Laplacian matrix of a graph G and q1(G) be the spectral radius of Q(G). It is known that the bug<...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172015000400006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720150004000062016-10-25Computing the maximal signless Laplacian index among graphs of prescribed order and diameterAbreu,NairLenes,EberRojo,Oscar Signless Laplacian index diameter bug H-join A bug Bug p,r1r2 is a graph obtained from a complete graph Kp by deleting an edge uv and attaching the paths Pri and Pr2 by one of their end vertices at u and v, respectively. Let Q(G) be the signless Laplacian matrix of a graph G and q1(G) be the spectral radius of Q(G). It is known that the bug<img src="http:/fbpe/img/proy/v34n4//art06_fig1.jpg" width="300" height="59"> maximizes q1(G) among all graphs G of order n and diameter d. For a bug B of order n and diameter d, n - d is an eigenvalue of Q(B) with multiplicity n - d - 1. In this paper, we prove that remainder d +1 eigenvalues of Q(B), among them q1(B), can be computed as the eigenvalues of a symmetric tridiagonal matrix of order d +1. Finally, we show that q1(B0) can be computed as the largest eigenvalue of a symmetric tridiagonal matrix of order<img src="http:/fbpe/img/proy/v34n4//art06_fig2.jpg" width="80" height="56"> whenever d is even.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.34 n.4 20152015-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400006en10.4067/S0716-09172015000400006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Signless Laplacian index diameter bug H-join |
spellingShingle |
Signless Laplacian index diameter bug H-join Abreu,Nair Lenes,Eber Rojo,Oscar Computing the maximal signless Laplacian index among graphs of prescribed order and diameter |
description |
A bug Bug p,r1r2 is a graph obtained from a complete graph Kp by deleting an edge uv and attaching the paths Pri and Pr2 by one of their end vertices at u and v, respectively. Let Q(G) be the signless Laplacian matrix of a graph G and q1(G) be the spectral radius of Q(G). It is known that the bug<img src="http:/fbpe/img/proy/v34n4//art06_fig1.jpg" width="300" height="59"> maximizes q1(G) among all graphs G of order n and diameter d. For a bug B of order n and diameter d, n - d is an eigenvalue of Q(B) with multiplicity n - d - 1. In this paper, we prove that remainder d +1 eigenvalues of Q(B), among them q1(B), can be computed as the eigenvalues of a symmetric tridiagonal matrix of order d +1. Finally, we show that q1(B0) can be computed as the largest eigenvalue of a symmetric tridiagonal matrix of order<img src="http:/fbpe/img/proy/v34n4//art06_fig2.jpg" width="80" height="56"> whenever d is even. |
author |
Abreu,Nair Lenes,Eber Rojo,Oscar |
author_facet |
Abreu,Nair Lenes,Eber Rojo,Oscar |
author_sort |
Abreu,Nair |
title |
Computing the maximal signless Laplacian index among graphs of prescribed order and diameter |
title_short |
Computing the maximal signless Laplacian index among graphs of prescribed order and diameter |
title_full |
Computing the maximal signless Laplacian index among graphs of prescribed order and diameter |
title_fullStr |
Computing the maximal signless Laplacian index among graphs of prescribed order and diameter |
title_full_unstemmed |
Computing the maximal signless Laplacian index among graphs of prescribed order and diameter |
title_sort |
computing the maximal signless laplacian index among graphs of prescribed order and diameter |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2015 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400006 |
work_keys_str_mv |
AT abreunair computingthemaximalsignlesslaplacianindexamonggraphsofprescribedorderanddiameter AT leneseber computingthemaximalsignlesslaplacianindexamonggraphsofprescribedorderanddiameter AT rojooscar computingthemaximalsignlesslaplacianindexamonggraphsofprescribedorderanddiameter |
_version_ |
1718439809416953856 |