The Banach-Steinhaus Theorem in Abstract Duality Pairs
Let E, F be sets and G a Hausdorff, abelian topological group with b : E X F→ G; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E,F : G). Let (Ei,Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of subsets of Fi and l...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2015
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Let E, F be sets and G a Hausdorff, abelian topological group with b : E X F→ G; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E,F : G). Let (Ei,Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of subsets of Fi and let τFi(Ei) = τi be the topology on Ei of uniform convergence on the members of Fi. Let J be a family of mappings from Ei to E2. We consider conditions which guarantee that J is τ1-τ2equicontinuous. We then apply the results to obtain versions of the Banach-Steinhaus Theorem for both abstract triples and for linear operators between locally convex spaces. |
---|