The Banach-Steinhaus Theorem in Abstract Duality Pairs
Let E, F be sets and G a Hausdorff, abelian topological group with b : E X F→ G; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E,F : G). Let (Ei,Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of subsets of Fi and l...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2015
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172015000400007 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720150004000072016-10-25The Banach-Steinhaus Theorem in Abstract Duality PairsCho,Min-HyungLi,RongluSwartz,CharlesLet E, F be sets and G a Hausdorff, abelian topological group with b : E X F→ G; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E,F : G). Let (Ei,Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of subsets of Fi and let τFi(Ei) = τi be the topology on Ei of uniform convergence on the members of Fi. Let J be a family of mappings from Ei to E2. We consider conditions which guarantee that J is τ1-τ2equicontinuous. We then apply the results to obtain versions of the Banach-Steinhaus Theorem for both abstract triples and for linear operators between locally convex spaces.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.34 n.4 20152015-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400007en10.4067/S0716-09172015000400007 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
description |
Let E, F be sets and G a Hausdorff, abelian topological group with b : E X F→ G; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E,F : G). Let (Ei,Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of subsets of Fi and let τFi(Ei) = τi be the topology on Ei of uniform convergence on the members of Fi. Let J be a family of mappings from Ei to E2. We consider conditions which guarantee that J is τ1-τ2equicontinuous. We then apply the results to obtain versions of the Banach-Steinhaus Theorem for both abstract triples and for linear operators between locally convex spaces. |
author |
Cho,Min-Hyung Li,Ronglu Swartz,Charles |
spellingShingle |
Cho,Min-Hyung Li,Ronglu Swartz,Charles The Banach-Steinhaus Theorem in Abstract Duality Pairs |
author_facet |
Cho,Min-Hyung Li,Ronglu Swartz,Charles |
author_sort |
Cho,Min-Hyung |
title |
The Banach-Steinhaus Theorem in Abstract Duality Pairs |
title_short |
The Banach-Steinhaus Theorem in Abstract Duality Pairs |
title_full |
The Banach-Steinhaus Theorem in Abstract Duality Pairs |
title_fullStr |
The Banach-Steinhaus Theorem in Abstract Duality Pairs |
title_full_unstemmed |
The Banach-Steinhaus Theorem in Abstract Duality Pairs |
title_sort |
banach-steinhaus theorem in abstract duality pairs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2015 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400007 |
work_keys_str_mv |
AT chominhyung thebanachsteinhaustheoreminabstractdualitypairs AT lironglu thebanachsteinhaustheoreminabstractdualitypairs AT swartzcharles thebanachsteinhaustheoreminabstractdualitypairs AT chominhyung banachsteinhaustheoreminabstractdualitypairs AT lironglu banachsteinhaustheoreminabstractdualitypairs AT swartzcharles banachsteinhaustheoreminabstractdualitypairs |
_version_ |
1718439809640300544 |