The Banach-Steinhaus Theorem in Abstract Duality Pairs

Let E, F be sets and G a Hausdorff, abelian topological group with b : E X F→ G; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E,F : G). Let (Ei,Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of subsets of Fi and l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cho,Min-Hyung, Li,Ronglu, Swartz,Charles
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2015
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172015000400007
record_format dspace
spelling oai:scielo:S0716-091720150004000072016-10-25The Banach-Steinhaus Theorem in Abstract Duality PairsCho,Min-HyungLi,RongluSwartz,CharlesLet E, F be sets and G a Hausdorff, abelian topological group with b : E X F→ G; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E,F : G). Let (Ei,Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of subsets of Fi and let τFi(Ei) = τi be the topology on Ei of uniform convergence on the members of Fi. Let J be a family of mappings from Ei to E2. We consider conditions which guarantee that J is τ1-τ2equicontinuous. We then apply the results to obtain versions of the Banach-Steinhaus Theorem for both abstract triples and for linear operators between locally convex spaces.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.34 n.4 20152015-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400007en10.4067/S0716-09172015000400007
institution Scielo Chile
collection Scielo Chile
language English
description Let E, F be sets and G a Hausdorff, abelian topological group with b : E X F→ G; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E,F : G). Let (Ei,Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of subsets of Fi and let τFi(Ei) = τi be the topology on Ei of uniform convergence on the members of Fi. Let J be a family of mappings from Ei to E2. We consider conditions which guarantee that J is τ1-τ2equicontinuous. We then apply the results to obtain versions of the Banach-Steinhaus Theorem for both abstract triples and for linear operators between locally convex spaces.
author Cho,Min-Hyung
Li,Ronglu
Swartz,Charles
spellingShingle Cho,Min-Hyung
Li,Ronglu
Swartz,Charles
The Banach-Steinhaus Theorem in Abstract Duality Pairs
author_facet Cho,Min-Hyung
Li,Ronglu
Swartz,Charles
author_sort Cho,Min-Hyung
title The Banach-Steinhaus Theorem in Abstract Duality Pairs
title_short The Banach-Steinhaus Theorem in Abstract Duality Pairs
title_full The Banach-Steinhaus Theorem in Abstract Duality Pairs
title_fullStr The Banach-Steinhaus Theorem in Abstract Duality Pairs
title_full_unstemmed The Banach-Steinhaus Theorem in Abstract Duality Pairs
title_sort banach-steinhaus theorem in abstract duality pairs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2015
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172015000400007
work_keys_str_mv AT chominhyung thebanachsteinhaustheoreminabstractdualitypairs
AT lironglu thebanachsteinhaustheoreminabstractdualitypairs
AT swartzcharles thebanachsteinhaustheoreminabstractdualitypairs
AT chominhyung banachsteinhaustheoreminabstractdualitypairs
AT lironglu banachsteinhaustheoreminabstractdualitypairs
AT swartzcharles banachsteinhaustheoreminabstractdualitypairs
_version_ 1718439809640300544