The forcing open monophonic number of a graph

For a connected graph G of order n ≥ 2, and for any mínimum open monophonic set S of G, a subset T of S is called a forcing subset for S if S is the unique minimum open monophonic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Santhakumaran,A. P., Mahendran,M.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2016
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172016000100005
record_format dspace
spelling oai:scielo:S0716-091720160001000052016-06-14The forcing open monophonic number of a graphSanthakumaran,A. P.Mahendran,M. Monophonic number open monophonic number forcing monophonic number forcing open monophonic number For a connected graph G of order n ≥ 2, and for any mínimum open monophonic set S of G, a subset T of S is called a forcing subset for S if S is the unique minimum open monophonic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing open monophonic number of S, de-noted by f om(S), is the cardinality of a minimum forcing subset of S. The forcing open monophonic number of G, denoted by f om(G), is f om(G) = min(f om(S)), where the minimum is taken over all minimum open monophonic sets in G. The forcing open monophonic numbers of certain standard graphs are determined. It is proved that for every pair a, b of integers with 0 ≤ a ≤ b - 4 and b ≥ 5, there exists a connected graph G such that f om(G) = a and om(G) = b. It is analyzed how the addition of a pendant edge to certain standard graphs affects the forcing open monophonic number.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.35 n.1 20162016-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100005en10.4067/S0716-09172016000100005
institution Scielo Chile
collection Scielo Chile
language English
topic Monophonic number
open monophonic number
forcing monophonic number
forcing open monophonic number
spellingShingle Monophonic number
open monophonic number
forcing monophonic number
forcing open monophonic number
Santhakumaran,A. P.
Mahendran,M.
The forcing open monophonic number of a graph
description For a connected graph G of order n ≥ 2, and for any mínimum open monophonic set S of G, a subset T of S is called a forcing subset for S if S is the unique minimum open monophonic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing open monophonic number of S, de-noted by f om(S), is the cardinality of a minimum forcing subset of S. The forcing open monophonic number of G, denoted by f om(G), is f om(G) = min(f om(S)), where the minimum is taken over all minimum open monophonic sets in G. The forcing open monophonic numbers of certain standard graphs are determined. It is proved that for every pair a, b of integers with 0 ≤ a ≤ b - 4 and b ≥ 5, there exists a connected graph G such that f om(G) = a and om(G) = b. It is analyzed how the addition of a pendant edge to certain standard graphs affects the forcing open monophonic number.
author Santhakumaran,A. P.
Mahendran,M.
author_facet Santhakumaran,A. P.
Mahendran,M.
author_sort Santhakumaran,A. P.
title The forcing open monophonic number of a graph
title_short The forcing open monophonic number of a graph
title_full The forcing open monophonic number of a graph
title_fullStr The forcing open monophonic number of a graph
title_full_unstemmed The forcing open monophonic number of a graph
title_sort forcing open monophonic number of a graph
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2016
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100005
work_keys_str_mv AT santhakumaranap theforcingopenmonophonicnumberofagraph
AT mahendranm theforcingopenmonophonicnumberofagraph
AT santhakumaranap forcingopenmonophonicnumberofagraph
AT mahendranm forcingopenmonophonicnumberofagraph
_version_ 1718439811308584960