The forcing open monophonic number of a graph
For a connected graph G of order n ≥ 2, and for any mínimum open monophonic set S of G, a subset T of S is called a forcing subset for S if S is the unique minimum open monophonic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172016000100005 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720160001000052016-06-14The forcing open monophonic number of a graphSanthakumaran,A. P.Mahendran,M. Monophonic number open monophonic number forcing monophonic number forcing open monophonic number For a connected graph G of order n ≥ 2, and for any mínimum open monophonic set S of G, a subset T of S is called a forcing subset for S if S is the unique minimum open monophonic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing open monophonic number of S, de-noted by f om(S), is the cardinality of a minimum forcing subset of S. The forcing open monophonic number of G, denoted by f om(G), is f om(G) = min(f om(S)), where the minimum is taken over all minimum open monophonic sets in G. The forcing open monophonic numbers of certain standard graphs are determined. It is proved that for every pair a, b of integers with 0 ≤ a ≤ b - 4 and b ≥ 5, there exists a connected graph G such that f om(G) = a and om(G) = b. It is analyzed how the addition of a pendant edge to certain standard graphs affects the forcing open monophonic number.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.35 n.1 20162016-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100005en10.4067/S0716-09172016000100005 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Monophonic number open monophonic number forcing monophonic number forcing open monophonic number |
spellingShingle |
Monophonic number open monophonic number forcing monophonic number forcing open monophonic number Santhakumaran,A. P. Mahendran,M. The forcing open monophonic number of a graph |
description |
For a connected graph G of order n ≥ 2, and for any mínimum open monophonic set S of G, a subset T of S is called a forcing subset for S if S is the unique minimum open monophonic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing open monophonic number of S, de-noted by f om(S), is the cardinality of a minimum forcing subset of S. The forcing open monophonic number of G, denoted by f om(G), is f om(G) = min(f om(S)), where the minimum is taken over all minimum open monophonic sets in G. The forcing open monophonic numbers of certain standard graphs are determined. It is proved that for every pair a, b of integers with 0 ≤ a ≤ b - 4 and b ≥ 5, there exists a connected graph G such that f om(G) = a and om(G) = b. It is analyzed how the addition of a pendant edge to certain standard graphs affects the forcing open monophonic number. |
author |
Santhakumaran,A. P. Mahendran,M. |
author_facet |
Santhakumaran,A. P. Mahendran,M. |
author_sort |
Santhakumaran,A. P. |
title |
The forcing open monophonic number of a graph |
title_short |
The forcing open monophonic number of a graph |
title_full |
The forcing open monophonic number of a graph |
title_fullStr |
The forcing open monophonic number of a graph |
title_full_unstemmed |
The forcing open monophonic number of a graph |
title_sort |
forcing open monophonic number of a graph |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2016 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100005 |
work_keys_str_mv |
AT santhakumaranap theforcingopenmonophonicnumberofagraph AT mahendranm theforcingopenmonophonicnumberofagraph AT santhakumaranap forcingopenmonophonicnumberofagraph AT mahendranm forcingopenmonophonicnumberofagraph |
_version_ |
1718439811308584960 |