Odd harmonious labeling of some cycle related graphs

A graph G(p, q) is said to be odd harmonious if there exists an in-jection f : V(G)→ {0,1, 2, ..., 2q - 1} such that the induced function f * : E(G) → {1, 3, ... 2q - 1} defined by f * (uv) = f (u) + f (v) is a bijection. A graph that admits odd harmonious labeling is called odd...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P., Philo,S.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2016
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172016000100006
record_format dspace
spelling oai:scielo:S0716-091720160001000062016-06-14Odd harmonious labeling of some cycle related graphsJeyanthi,P.Philo,S. Harmonious labeling odd harmonious labeling odd harmonious graph strongly odd harmonious labeling strongly odd harmonious graph A graph G(p, q) is said to be odd harmonious if there exists an in-jection f : V(G)→ {0,1, 2, ..., 2q - 1} such that the induced function f * : E(G) → {1, 3, ... 2q - 1} defined by f * (uv) = f (u) + f (v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper we prove that any two even cycles sharing a common vertex and a common edge are odd harmonious graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.35 n.1 20162016-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100006en10.4067/S0716-09172016000100006
institution Scielo Chile
collection Scielo Chile
language English
topic Harmonious labeling
odd harmonious labeling
odd harmonious graph
strongly odd harmonious labeling
strongly odd harmonious graph
spellingShingle Harmonious labeling
odd harmonious labeling
odd harmonious graph
strongly odd harmonious labeling
strongly odd harmonious graph
Jeyanthi,P.
Philo,S.
Odd harmonious labeling of some cycle related graphs
description A graph G(p, q) is said to be odd harmonious if there exists an in-jection f : V(G)→ {0,1, 2, ..., 2q - 1} such that the induced function f * : E(G) → {1, 3, ... 2q - 1} defined by f * (uv) = f (u) + f (v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper we prove that any two even cycles sharing a common vertex and a common edge are odd harmonious graphs.
author Jeyanthi,P.
Philo,S.
author_facet Jeyanthi,P.
Philo,S.
author_sort Jeyanthi,P.
title Odd harmonious labeling of some cycle related graphs
title_short Odd harmonious labeling of some cycle related graphs
title_full Odd harmonious labeling of some cycle related graphs
title_fullStr Odd harmonious labeling of some cycle related graphs
title_full_unstemmed Odd harmonious labeling of some cycle related graphs
title_sort odd harmonious labeling of some cycle related graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2016
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100006
work_keys_str_mv AT jeyanthip oddharmoniouslabelingofsomecyclerelatedgraphs
AT philos oddharmoniouslabelingofsomecyclerelatedgraphs
_version_ 1718439811600089088