Odd harmonious labeling of some cycle related graphs
A graph G(p, q) is said to be odd harmonious if there exists an in-jection f : V(G)→ {0,1, 2, ..., 2q - 1} such that the induced function f * : E(G) → {1, 3, ... 2q - 1} defined by f * (uv) = f (u) + f (v) is a bijection. A graph that admits odd harmonious labeling is called odd...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172016000100006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720160001000062016-06-14Odd harmonious labeling of some cycle related graphsJeyanthi,P.Philo,S. Harmonious labeling odd harmonious labeling odd harmonious graph strongly odd harmonious labeling strongly odd harmonious graph A graph G(p, q) is said to be odd harmonious if there exists an in-jection f : V(G)→ {0,1, 2, ..., 2q - 1} such that the induced function f * : E(G) → {1, 3, ... 2q - 1} defined by f * (uv) = f (u) + f (v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper we prove that any two even cycles sharing a common vertex and a common edge are odd harmonious graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.35 n.1 20162016-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100006en10.4067/S0716-09172016000100006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Harmonious labeling odd harmonious labeling odd harmonious graph strongly odd harmonious labeling strongly odd harmonious graph |
spellingShingle |
Harmonious labeling odd harmonious labeling odd harmonious graph strongly odd harmonious labeling strongly odd harmonious graph Jeyanthi,P. Philo,S. Odd harmonious labeling of some cycle related graphs |
description |
A graph G(p, q) is said to be odd harmonious if there exists an in-jection f : V(G)→ {0,1, 2, ..., 2q - 1} such that the induced function f * : E(G) → {1, 3, ... 2q - 1} defined by f * (uv) = f (u) + f (v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper we prove that any two even cycles sharing a common vertex and a common edge are odd harmonious graphs. |
author |
Jeyanthi,P. Philo,S. |
author_facet |
Jeyanthi,P. Philo,S. |
author_sort |
Jeyanthi,P. |
title |
Odd harmonious labeling of some cycle related graphs |
title_short |
Odd harmonious labeling of some cycle related graphs |
title_full |
Odd harmonious labeling of some cycle related graphs |
title_fullStr |
Odd harmonious labeling of some cycle related graphs |
title_full_unstemmed |
Odd harmonious labeling of some cycle related graphs |
title_sort |
odd harmonious labeling of some cycle related graphs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2016 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100006 |
work_keys_str_mv |
AT jeyanthip oddharmoniouslabelingofsomecyclerelatedgraphs AT philos oddharmoniouslabelingofsomecyclerelatedgraphs |
_version_ |
1718439811600089088 |