Odd harmonious labeling of some cycle related graphs
A graph G(p, q) is said to be odd harmonious if there exists an in-jection f : V(G)→ {0,1, 2, ..., 2q - 1} such that the induced function f * : E(G) → {1, 3, ... 2q - 1} defined by f * (uv) = f (u) + f (v) is a bijection. A graph that admits odd harmonious labeling is called odd...
Guardado en:
Autores principales: | Jeyanthi,P., Philo,S. |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Odd harmonious labeling of super subdivisión graphs
por: Jeyanthi,P., et al.
Publicado: (2019) -
Odd Harmonious Labeling of Some Classes of Graphs
por: Jeyanthi,P., et al.
Publicado: (2020) -
Odd harmonious labeling of grid graphs
por: Jeyanthi,P., et al.
Publicado: (2019) -
Odd vertex equitable even labeling of graphs
por: Jeyanthi,P, et al.
Publicado: (2017) -
Odd Vertex equitable even labeling of cyclic snake related graphs
por: Jeyanthi,P., et al.
Publicado: (2018)