Sum divisor cordial graphs

A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V (G) to {1, 2, ..., |V (G)|} such that an edge uv is assigned the label 1 if 2 divides f (u) + f (v) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lourdusamy,A., Patrick,F.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2016
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000100008
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V (G) to {1, 2, ..., |V (G)|} such that an edge uv is assigned the label 1 if 2 divides f (u) + f (v) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we prove that path, comb, star, complete bipartite, K2 + mK1, bistar, jewel, crown, flower, gear, subdivision of the star, K1,3* K1,n and square graph of Bn,n are sum divisor cordial graphs.