Vertex equitable labeling of union of cyclic snake related graphs
Let G be a graph with p vértices and q edges and A = {0,1, 2,..., q/2}. A vertex labeling f : V(G) → A induces an edge labeling f * defined by f *(uv) = f (u) + f (v) for all edges uv. For a ∈ A, let v f (a) be the number of vertices v with f (v) = a. A graph G is said to be vert...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000200003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Let G be a graph with p vértices and q edges and A = {0,1, 2,..., q/2}. A vertex labeling f : V(G) → A induces an edge labeling f * defined by f *(uv) = f (u) + f (v) for all edges uv. For a ∈ A, let v f (a) be the number of vertices v with f (v) = a. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in A, |v f(a) - v f b)| ≤ 1 and the induced edge labels are 1, 2, 3,...,q. In this paper, we prove that key graph KY(m, n), P(2.QSn), P(m.QSn), C(n.QSm), NQ(m) and K1,n X P2are vertex equitable graphs. |
---|