Approximate Drygas mappings on a set of measure zero
Let R be the set of real numbers, Y be a Banach space and f : R →Y. We prove the Hyers-Ulam stability for the Drygas functional equation f (x + y) + f (x - y) = 2f (x) + f (y) + f (-y) for all (x, y) ∈ Ω, where Ω⊂ R² is of Lebesgue measure 0.
Guardado en:
Autor principal: | Almahalebi,Muaadh |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000200007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A generalization of Drygas functional equation
por: Charifi,A., et al.
Publicado: (2016) -
Some hyperstability results of a p-radical functional equation related to Drygas mappings in non-Archimedean Banach spaces
por: Hryrou,Mustapha Esseghyr, et al.
Publicado: (2021) -
Erratum to "Approximation of Drygas functional equation on a set of measure zero
por: Almahalebi,Muaadh
Publicado: (2016) -
Infinitely many solutions for anisotropic elliptic equations with variable exponent
por: El Amrouss,Abdelrachid, et al.
Publicado: (2021) -
General solution and hyperstability results for a cubic radical functional equation related to quadratic mapping
por: Ghali,Rachid El, et al.
Publicado: (2020)