Unicyclic graphs with equal domination and complementary tree domination numbers

Let G = (V, E) be a simple graph. A set <img src="http:/fbpe/img/proy/v35n3/art2_fig1.jpg" width="75" height="18"> is a dominating set if every vertex in V(G) \ D is adjacent to a vertex of D. A dominating set D of a graph G is a complementary tree dominating set...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Krishnakumari,B, Venkatakrishnan,Y. B
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2016
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Let G = (V, E) be a simple graph. A set <img src="http:/fbpe/img/proy/v35n3/art2_fig1.jpg" width="75" height="18"> is a dominating set if every vertex in V(G) \ D is adjacent to a vertex of D. A dominating set D of a graph G is a complementary tree dominating set if induced sub graph (V \ D) is a tree. The domination (complementary tree domination, respectively) number of G is the minimum cardinality of a dominating (complementary tree dominating, respectively) set of G. We characterize all unicyclic graphs with equal domination and complementary tree domination numbers.