Unicyclic graphs with equal domination and complementary tree domination numbers
Let G = (V, E) be a simple graph. A set <img src="http:/fbpe/img/proy/v35n3/art2_fig1.jpg" width="75" height="18"> is a dominating set if every vertex in V(G) \ D is adjacent to a vertex of D. A dominating set D of a graph G is a complementary tree dominating set...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Let G = (V, E) be a simple graph. A set <img src="http:/fbpe/img/proy/v35n3/art2_fig1.jpg" width="75" height="18"> is a dominating set if every vertex in V(G) \ D is adjacent to a vertex of D. A dominating set D of a graph G is a complementary tree dominating set if induced sub graph (V \ D) is a tree. The domination (complementary tree domination, respectively) number of G is the minimum cardinality of a dominating (complementary tree dominating, respectively) set of G. We characterize all unicyclic graphs with equal domination and complementary tree domination numbers. |
---|