Unicyclic graphs with equal domination and complementary tree domination numbers
Let G = (V, E) be a simple graph. A set <img src="http:/fbpe/img/proy/v35n3/art2_fig1.jpg" width="75" height="18"> is a dominating set if every vertex in V(G) \ D is adjacent to a vertex of D. A dominating set D of a graph G is a complementary tree dominating set...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172016000300002 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720160003000022016-10-03Unicyclic graphs with equal domination and complementary tree domination numbersKrishnakumari,BVenkatakrishnan,Y. B Domination Let G = (V, E) be a simple graph. A set <img src="http:/fbpe/img/proy/v35n3/art2_fig1.jpg" width="75" height="18"> is a dominating set if every vertex in V(G) \ D is adjacent to a vertex of D. A dominating set D of a graph G is a complementary tree dominating set if induced sub graph (V \ D) is a tree. The domination (complementary tree domination, respectively) number of G is the minimum cardinality of a dominating (complementary tree dominating, respectively) set of G. We characterize all unicyclic graphs with equal domination and complementary tree domination numbers.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.35 n.3 20162016-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300002en10.4067/S0716-09172016000300002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Domination |
spellingShingle |
Domination Krishnakumari,B Venkatakrishnan,Y. B Unicyclic graphs with equal domination and complementary tree domination numbers |
description |
Let G = (V, E) be a simple graph. A set <img src="http:/fbpe/img/proy/v35n3/art2_fig1.jpg" width="75" height="18"> is a dominating set if every vertex in V(G) \ D is adjacent to a vertex of D. A dominating set D of a graph G is a complementary tree dominating set if induced sub graph (V \ D) is a tree. The domination (complementary tree domination, respectively) number of G is the minimum cardinality of a dominating (complementary tree dominating, respectively) set of G. We characterize all unicyclic graphs with equal domination and complementary tree domination numbers. |
author |
Krishnakumari,B Venkatakrishnan,Y. B |
author_facet |
Krishnakumari,B Venkatakrishnan,Y. B |
author_sort |
Krishnakumari,B |
title |
Unicyclic graphs with equal domination and complementary tree domination numbers |
title_short |
Unicyclic graphs with equal domination and complementary tree domination numbers |
title_full |
Unicyclic graphs with equal domination and complementary tree domination numbers |
title_fullStr |
Unicyclic graphs with equal domination and complementary tree domination numbers |
title_full_unstemmed |
Unicyclic graphs with equal domination and complementary tree domination numbers |
title_sort |
unicyclic graphs with equal domination and complementary tree domination numbers |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2016 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300002 |
work_keys_str_mv |
AT krishnakumarib unicyclicgraphswithequaldominationandcomplementarytreedominationnumbers AT venkatakrishnanyb unicyclicgraphswithequaldominationandcomplementarytreedominationnumbers |
_version_ |
1718439814475284480 |