Unicyclic graphs with equal domination and complementary tree domination numbers
Let G = (V, E) be a simple graph. A set <img src="http:/fbpe/img/proy/v35n3/art2_fig1.jpg" width="75" height="18"> is a dominating set if every vertex in V(G) \ D is adjacent to a vertex of D. A dominating set D of a graph G is a complementary tree dominating set...
Guardado en:
Autores principales: | Krishnakumari,B, Venkatakrishnan,Y. B |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A note on complementary tree domination number of a tree
por: Krishnakumari,B, et al.
Publicado: (2015) -
Trees with vertex-edge roman domination number twice the domination number minus one
por: Naresh Kumar,H., et al.
Publicado: (2020) -
On the upper geodetic global domination number of a graph
por: Lenin Xaviour,X., et al.
Publicado: (2020) -
On the Quasi-Total Roman Domination Number of Graphs
por: Abel Cabrera Martínez, et al.
Publicado: (2021) -
Total domination and vertex-edge domination in tres
por: Venkatakrishnan,Y. B., et al.
Publicado: (2019)