Total edge irregularity strength of disjoint union of double wheel graphs
An edge irregular total k-labeling f : V ∪ E → {1, 2, 3,...,k} of a graph G = (V, E) is a labeling of vertices and edges of G in such a way thatfor any two different edges uv and u'v' their weights f (u) + f (uv) + f (v) and f (u') + f (u'v') + f (v'...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | An edge irregular total k-labeling f : V ∪ E → {1, 2, 3,...,k} of a graph G = (V, E) is a labeling of vertices and edges of G in such a way thatfor any two different edges uv and u'v' their weights f (u) + f (uv) + f (v) and f (u') + f (u'v') + f (v') are distinct. The total edge irregularity strength tes(G) is defined as the minimum k for which the graph G has an edge irregular total k-labeling. In this paper, we determine the total edge irregularity strength of disjoint union of p isomorphic double wheel graphs and disjoint union of p consecutive non-isomorphic double wheel graphs. |
---|