Total edge irregularity strength of disjoint union of double wheel graphs
An edge irregular total k-labeling f : V ∪ E → {1, 2, 3,...,k} of a graph G = (V, E) is a labeling of vertices and edges of G in such a way thatfor any two different edges uv and u'v' their weights f (u) + f (uv) + f (v) and f (u') + f (u'v') + f (v'...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172016000300003 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720160003000032016-10-03Total edge irregularity strength of disjoint union of double wheel graphsJeyanthi,PSudha,A Irregularity strength total edge irregularity strength edge irregular total labeling, disjoint union of double wheel graphs. An edge irregular total k-labeling f : V ∪ E → {1, 2, 3,...,k} of a graph G = (V, E) is a labeling of vertices and edges of G in such a way thatfor any two different edges uv and u'v' their weights f (u) + f (uv) + f (v) and f (u') + f (u'v') + f (v') are distinct. The total edge irregularity strength tes(G) is defined as the minimum k for which the graph G has an edge irregular total k-labeling. In this paper, we determine the total edge irregularity strength of disjoint union of p isomorphic double wheel graphs and disjoint union of p consecutive non-isomorphic double wheel graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.35 n.3 20162016-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300003en10.4067/S0716-09172016000300003 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Irregularity strength total edge irregularity strength edge irregular total labeling, disjoint union of double wheel graphs. |
spellingShingle |
Irregularity strength total edge irregularity strength edge irregular total labeling, disjoint union of double wheel graphs. Jeyanthi,P Sudha,A Total edge irregularity strength of disjoint union of double wheel graphs |
description |
An edge irregular total k-labeling f : V ∪ E → {1, 2, 3,...,k} of a graph G = (V, E) is a labeling of vertices and edges of G in such a way thatfor any two different edges uv and u'v' their weights f (u) + f (uv) + f (v) and f (u') + f (u'v') + f (v') are distinct. The total edge irregularity strength tes(G) is defined as the minimum k for which the graph G has an edge irregular total k-labeling. In this paper, we determine the total edge irregularity strength of disjoint union of p isomorphic double wheel graphs and disjoint union of p consecutive non-isomorphic double wheel graphs. |
author |
Jeyanthi,P Sudha,A |
author_facet |
Jeyanthi,P Sudha,A |
author_sort |
Jeyanthi,P |
title |
Total edge irregularity strength of disjoint union of double wheel graphs |
title_short |
Total edge irregularity strength of disjoint union of double wheel graphs |
title_full |
Total edge irregularity strength of disjoint union of double wheel graphs |
title_fullStr |
Total edge irregularity strength of disjoint union of double wheel graphs |
title_full_unstemmed |
Total edge irregularity strength of disjoint union of double wheel graphs |
title_sort |
total edge irregularity strength of disjoint union of double wheel graphs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2016 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300003 |
work_keys_str_mv |
AT jeyanthip totaledgeirregularitystrengthofdisjointunionofdoublewheelgraphs AT sudhaa totaledgeirregularitystrengthofdisjointunionofdoublewheelgraphs |
_version_ |
1718439814725894144 |