Asymptotic stability in delay nonlinear fractional differential equations

In this paper, we give sufficient conditions to guarantee the asymptotic stability of the zero solution to a kind of delay nonlinear fractional differential equations of order <img src="http:/fbpe/img/proy/v35n3/art4_fig1.jpg" width="85" height="11">. By using the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ardjouni,A, Boulares,H, Djoudi,A
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2016
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172016000300004
record_format dspace
spelling oai:scielo:S0716-091720160003000042016-10-03Asymptotic stability in delay nonlinear fractional differential equationsArdjouni,ABoulares,HDjoudi,A Delay fractional differential equations Fixed point the-ory Asymptotic stability In this paper, we give sufficient conditions to guarantee the asymptotic stability of the zero solution to a kind of delay nonlinear fractional differential equations of order <img src="http:/fbpe/img/proy/v35n3/art4_fig1.jpg" width="85" height="11">. By using the Banach&#8217;s contraction mapping principle in a weighted Banach space, we establish new results on the asymptotic stability of the zero solution provided that g (t, 0) = f (t, 0, 0) = 0, which include and improve some related results in the literature.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.35 n.3 20162016-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300004en10.4067/S0716-09172016000300004
institution Scielo Chile
collection Scielo Chile
language English
topic Delay fractional differential equations
Fixed point the-ory
Asymptotic stability
spellingShingle Delay fractional differential equations
Fixed point the-ory
Asymptotic stability
Ardjouni,A
Boulares,H
Djoudi,A
Asymptotic stability in delay nonlinear fractional differential equations
description In this paper, we give sufficient conditions to guarantee the asymptotic stability of the zero solution to a kind of delay nonlinear fractional differential equations of order <img src="http:/fbpe/img/proy/v35n3/art4_fig1.jpg" width="85" height="11">. By using the Banach&#8217;s contraction mapping principle in a weighted Banach space, we establish new results on the asymptotic stability of the zero solution provided that g (t, 0) = f (t, 0, 0) = 0, which include and improve some related results in the literature.
author Ardjouni,A
Boulares,H
Djoudi,A
author_facet Ardjouni,A
Boulares,H
Djoudi,A
author_sort Ardjouni,A
title Asymptotic stability in delay nonlinear fractional differential equations
title_short Asymptotic stability in delay nonlinear fractional differential equations
title_full Asymptotic stability in delay nonlinear fractional differential equations
title_fullStr Asymptotic stability in delay nonlinear fractional differential equations
title_full_unstemmed Asymptotic stability in delay nonlinear fractional differential equations
title_sort asymptotic stability in delay nonlinear fractional differential equations
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2016
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300004
work_keys_str_mv AT ardjounia asymptoticstabilityindelaynonlinearfractionaldifferentialequations
AT boularesh asymptoticstabilityindelaynonlinearfractionaldifferentialequations
AT djoudia asymptoticstabilityindelaynonlinearfractionaldifferentialequations
_version_ 1718439814988038144