Asymptotic stability in delay nonlinear fractional differential equations
In this paper, we give sufficient conditions to guarantee the asymptotic stability of the zero solution to a kind of delay nonlinear fractional differential equations of order <img src="http:/fbpe/img/proy/v35n3/art4_fig1.jpg" width="85" height="11">. By using the...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172016000300004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720160003000042016-10-03Asymptotic stability in delay nonlinear fractional differential equationsArdjouni,ABoulares,HDjoudi,A Delay fractional differential equations Fixed point the-ory Asymptotic stability In this paper, we give sufficient conditions to guarantee the asymptotic stability of the zero solution to a kind of delay nonlinear fractional differential equations of order <img src="http:/fbpe/img/proy/v35n3/art4_fig1.jpg" width="85" height="11">. By using the Banach’s contraction mapping principle in a weighted Banach space, we establish new results on the asymptotic stability of the zero solution provided that g (t, 0) = f (t, 0, 0) = 0, which include and improve some related results in the literature.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.35 n.3 20162016-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300004en10.4067/S0716-09172016000300004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Delay fractional differential equations Fixed point the-ory Asymptotic stability |
spellingShingle |
Delay fractional differential equations Fixed point the-ory Asymptotic stability Ardjouni,A Boulares,H Djoudi,A Asymptotic stability in delay nonlinear fractional differential equations |
description |
In this paper, we give sufficient conditions to guarantee the asymptotic stability of the zero solution to a kind of delay nonlinear fractional differential equations of order <img src="http:/fbpe/img/proy/v35n3/art4_fig1.jpg" width="85" height="11">. By using the Banach’s contraction mapping principle in a weighted Banach space, we establish new results on the asymptotic stability of the zero solution provided that g (t, 0) = f (t, 0, 0) = 0, which include and improve some related results in the literature. |
author |
Ardjouni,A Boulares,H Djoudi,A |
author_facet |
Ardjouni,A Boulares,H Djoudi,A |
author_sort |
Ardjouni,A |
title |
Asymptotic stability in delay nonlinear fractional differential equations |
title_short |
Asymptotic stability in delay nonlinear fractional differential equations |
title_full |
Asymptotic stability in delay nonlinear fractional differential equations |
title_fullStr |
Asymptotic stability in delay nonlinear fractional differential equations |
title_full_unstemmed |
Asymptotic stability in delay nonlinear fractional differential equations |
title_sort |
asymptotic stability in delay nonlinear fractional differential equations |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2016 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300004 |
work_keys_str_mv |
AT ardjounia asymptoticstabilityindelaynonlinearfractionaldifferentialequations AT boularesh asymptoticstabilityindelaynonlinearfractionaldifferentialequations AT djoudia asymptoticstabilityindelaynonlinearfractionaldifferentialequations |
_version_ |
1718439814988038144 |