One modulo three mean labeling of transformed trees

A graph G is said to be one modulo three mean graph if there is an injective function φ from the vertex set of G to the set {a|0 ≤ a ≤ 3q- 2 and either a ≡ 0(mod 3) or a ≡ 1(mod 3)} where q is the number of edges G and φ induces a bijection &...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P, Maheswari,A, Pandiaraj,P
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2016
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A graph G is said to be one modulo three mean graph if there is an injective function &#966; from the vertex set of G to the set {a|0 &#8804; a &#8804; 3q- 2 and either a &#8801; 0(mod 3) or a &#8801; 1(mod 3)} where q is the number of edges G and &#966; induces a bijection &#966;* from the edge set of G to {a|1 &#8804; a &#8804; 3q - 2 and either a &#8801; 1(mod 3)} given by <img src="http:/fbpe/img/proy/v35n3/art5_fig1.jpg" width="242" height="77"> and the function &#966; is called one modulo three mean labeling of G. In this paper, we prove that the graphs T ° Kn, T ô K1,n, T ô Pn and T ô 2Pn are one modulo three mean graphs.