Non-linear maps preserving singular algebraic operators

Let B(H) be the algebra of all bounded linear operators on an infinite-dimensional Hilbert space H. We prove that if Φ is a surjective map on B(H) such that Φ(I) = I + Φ(0) and for every pair T, S ∈ B(H), the operator T - S is singular algebraic if and only if &a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Oudghiri,Mourad, Souilah,Khalid
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2016
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172016000300007
record_format dspace
spelling oai:scielo:S0716-091720160003000072016-10-03Non-linear maps preserving singular algebraic operatorsOudghiri,MouradSouilah,Khalid Non-linear preserver problems Algebraic operators. Let B(H) be the algebra of all bounded linear operators on an infinite-dimensional Hilbert space H. We prove that if Φ is a surjective map on B(H) such that Φ(I) = I + Φ(0) and for every pair T, S ∈ B(H), the operator T - S is singular algebraic if and only if Φ(T) - Φ(S) is singular algebraic, then Φ is either of the form Φ(T) = ATA-1 + Φ(0) or the form Φ(T) = AT*A-1 + Φ(0) where A : H → H is an invertible bounded linear, or conjugate linear, operator.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.35 n.3 20162016-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300007en10.4067/S0716-09172016000300007
institution Scielo Chile
collection Scielo Chile
language English
topic Non-linear preserver problems
Algebraic operators.
spellingShingle Non-linear preserver problems
Algebraic operators.
Oudghiri,Mourad
Souilah,Khalid
Non-linear maps preserving singular algebraic operators
description Let B(H) be the algebra of all bounded linear operators on an infinite-dimensional Hilbert space H. We prove that if Φ is a surjective map on B(H) such that Φ(I) = I + Φ(0) and for every pair T, S ∈ B(H), the operator T - S is singular algebraic if and only if Φ(T) - Φ(S) is singular algebraic, then Φ is either of the form Φ(T) = ATA-1 + Φ(0) or the form Φ(T) = AT*A-1 + Φ(0) where A : H → H is an invertible bounded linear, or conjugate linear, operator.
author Oudghiri,Mourad
Souilah,Khalid
author_facet Oudghiri,Mourad
Souilah,Khalid
author_sort Oudghiri,Mourad
title Non-linear maps preserving singular algebraic operators
title_short Non-linear maps preserving singular algebraic operators
title_full Non-linear maps preserving singular algebraic operators
title_fullStr Non-linear maps preserving singular algebraic operators
title_full_unstemmed Non-linear maps preserving singular algebraic operators
title_sort non-linear maps preserving singular algebraic operators
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2016
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300007
work_keys_str_mv AT oudghirimourad nonlinearmapspreservingsingularalgebraicoperators
AT souilahkhalid nonlinearmapspreservingsingularalgebraicoperators
_version_ 1718439815825850368