Non-linear maps preserving singular algebraic operators
Let B(H) be the algebra of all bounded linear operators on an infinite-dimensional Hilbert space H. We prove that if Φ is a surjective map on B(H) such that Φ(I) = I + Φ(0) and for every pair T, S ∈ B(H), the operator T - S is singular algebraic if and only if &a...
Guardado en:
Autores principales: | Oudghiri,Mourad, Souilah,Khalid |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000300007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On linear maps that preserve G-partial-isometries in Hilbert space
por: Chahbi,Abdellatif, et al.
Publicado: (2014) - Linear & multilinear algebra
- Journal of linear and topological algebra
-
Maps preserving the square zero of η-Lie product of operators
por: Taghavi,Ali, et al.
Publicado: (2020) - Linear algebra and its applications