Energy of strongly connected digraphs whose underlying graph is a cycle

The energy of a digraph is defined as E (D) =&#8721;1n|Re (z k)|, where z1,..., z n are the eigenvalues of the adjacency matrix of D. This is a generalization of the concept of energy introduced by I. Gutman in 1978. When the characteristic polynomial ofa digraph D is ofthe form <img width=38...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Monsalve,Juan, Rada,Juan
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2016
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000400003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The energy of a digraph is defined as E (D) =&#8721;1n|Re (z k)|, where z1,..., z n are the eigenvalues of the adjacency matrix of D. This is a generalization of the concept of energy introduced by I. Gutman in 1978. When the characteristic polynomial ofa digraph D is ofthe form <img width=387 height=66 src="../../../../../Users/Raul%20Jimenez/Desktop/F01art01.jpg"> where bo (D) = 1 and b k(D) &#8805; 0 for all k, we show that <img src="../imagenes/F02art01.jpg" alt="" width="385" height="72"> This expression for the energy has many applications in the study of extremal values of the energy in special classes of digraphs. In this paper we consider the set D* (Cn) of all strongly connected digraphs whose underlying graph is the cycle Cn, and characterize those whose characteristic polynomial is of the form (0.1). As a consequence, we find the extremal values of the energy based on (0.2).