Some results on skolem odd difference mean labeling
Let G = (V, E) be a graph with p vertices and q edges. A graph G is said to be skolem odd difference mean if there exists a function f : V(G) → {0, 1, 2, 3,...,p+3q - 3} satisfying f is 1-1 and the induced map f * : E(G) →{1, 3, 5,..., 2q-1} defined by f * (e) = [(f(u)-f(v))/2] i...
Guardado en:
Autores principales: | Jeyanthi,P, Kalaiyarasi,R, Ramya,D, Saratha Devi,T |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000400004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Skolem Difference Mean Graphs
por: Selvi,M., et al.
Publicado: (2015) -
Skolem difference mean labeling of disconnected graphs
por: Jeyanthi,P., et al.
Publicado: (2017) -
Odd vertex equitable even labeling of graphs
por: Jeyanthi,P, et al.
Publicado: (2017) -
On even vertex odd mean labeling of the calendula graphs
por: Basher,M.
Publicado: (2020) -
Odd Vertex equitable even labeling of cyclic snake related graphs
por: Jeyanthi,P., et al.
Publicado: (2018)