Sum divisor cordial labeling for star and ladder related graphs

A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2, . . . , |V(G)|} such that an edge uv is assigned the label 1 if 2 divides f (u) + f (v) and 0 otherwise; and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lourdusamy,A, Patrick,F
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2016
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000400006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2, . . . , |V(G)|} such that an edge uv is assigned the label 1 if 2 divides f (u) + f (v) and 0 otherwise; and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we prove that D2(K1,n), S' (K1,n), D2(Bn,n), DS(Bn,n), S' (Bn,n), S(Bn,n), < K(1)1,n&#916;K(2)1,n&gt;, S(Ln), Ln O K1, SLn, TLn, TLn O Ki and CHn are sum divisor cordial graphs.