An equivalence in generalized almost-Jordan algebras
In this paper we work with the variety of commutative algebras satisfying the identity β((x²y)x - ((yx)x)x) +γ(x³y - ((yx)x)x) = 0, where β, γ are scalars. They are called generalized almost-Jordan algebras. We prove that this variety is equivalent to the variety...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000400011 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172016000400011 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720160004000112017-01-05An equivalence in generalized almost-Jordan algebrasGuzzo Jr,HenriqueLabra,Alicia Jordan algebras generalized almost-Jordan algebras Lie Triple algebras In this paper we work with the variety of commutative algebras satisfying the identity β((x²y)x - ((yx)x)x) +γ(x³y - ((yx)x)x) = 0, where β, γ are scalars. They are called generalized almost-Jordan algebras. We prove that this variety is equivalent to the variety of commutative algebras satisfying (3β + γ)(Gy(x,z,t) - Gx(y,z,t)) + (β + 3γ)(J(x,z,t)y - J(y,z,t)x) = 0, for all x,y,z,t ∈ A, where J(x,y,z) = (xy)z+(yz)x+(zx)y and Gx(y,z,t) = (yz,x,t)+(yt,x,z)+ (zt,x,y). Moreover, we prove that if A is a commutative algebra, then J (x, z, t)y = J (y, z, t)x, for all x, y, z, t ∈ A, if and only if A is a generalized almost-Jordan algebra for β= 1 and γ = -3, that is, A satisfies the identity (x²y)x + 2((yx)x)x - 3x³y = 0 and we study this identity. We also prove that if A is a commutative algebra, then Gy(x,z,t) = Gx(y,z,t), for all x,y,z,t ∈ A, ifand only if A is an almost-Jordan or a Lie Triple algebra.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.35 n.4 20162016-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000400011en10.4067/S0716-09172016000400011 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Jordan algebras generalized almost-Jordan algebras Lie Triple algebras |
spellingShingle |
Jordan algebras generalized almost-Jordan algebras Lie Triple algebras Guzzo Jr,Henrique Labra,Alicia An equivalence in generalized almost-Jordan algebras |
description |
In this paper we work with the variety of commutative algebras satisfying the identity β((x²y)x - ((yx)x)x) +γ(x³y - ((yx)x)x) = 0, where β, γ are scalars. They are called generalized almost-Jordan algebras. We prove that this variety is equivalent to the variety of commutative algebras satisfying (3β + γ)(Gy(x,z,t) - Gx(y,z,t)) + (β + 3γ)(J(x,z,t)y - J(y,z,t)x) = 0, for all x,y,z,t ∈ A, where J(x,y,z) = (xy)z+(yz)x+(zx)y and Gx(y,z,t) = (yz,x,t)+(yt,x,z)+ (zt,x,y). Moreover, we prove that if A is a commutative algebra, then J (x, z, t)y = J (y, z, t)x, for all x, y, z, t ∈ A, if and only if A is a generalized almost-Jordan algebra for β= 1 and γ = -3, that is, A satisfies the identity (x²y)x + 2((yx)x)x - 3x³y = 0 and we study this identity. We also prove that if A is a commutative algebra, then Gy(x,z,t) = Gx(y,z,t), for all x,y,z,t ∈ A, ifand only if A is an almost-Jordan or a Lie Triple algebra. |
author |
Guzzo Jr,Henrique Labra,Alicia |
author_facet |
Guzzo Jr,Henrique Labra,Alicia |
author_sort |
Guzzo Jr,Henrique |
title |
An equivalence in generalized almost-Jordan algebras |
title_short |
An equivalence in generalized almost-Jordan algebras |
title_full |
An equivalence in generalized almost-Jordan algebras |
title_fullStr |
An equivalence in generalized almost-Jordan algebras |
title_full_unstemmed |
An equivalence in generalized almost-Jordan algebras |
title_sort |
equivalence in generalized almost-jordan algebras |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2016 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172016000400011 |
work_keys_str_mv |
AT guzzojrhenrique anequivalenceingeneralizedalmostjordanalgebras AT labraalicia anequivalenceingeneralizedalmostjordanalgebras AT guzzojrhenrique equivalenceingeneralizedalmostjordanalgebras AT labraalicia equivalenceingeneralizedalmostjordanalgebras |
_version_ |
1718439819157176320 |