Odd vertex equitable even labeling of graphs

In this paper, we introduce a new labeling called odd vertex equitable even labeling. Let G be a graph with p vertices and q edges and A = {1, 3,..., q} if q is odd or A = {1, 3,..., q + 1} if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P, Maheswari Kamaraj,A, Vijayalakshmi,M
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000100001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172017000100001
record_format dspace
spelling oai:scielo:S0716-091720170001000012017-02-13Odd vertex equitable even labeling of graphsJeyanthi,PMaheswari Kamaraj,AVijayalakshmi,M Mean labeling odd mean labeling k-equitable labeling vertex equitable labeling odd vertex equitable even labeling odd vertex equitable even graph In this paper, we introduce a new labeling called odd vertex equitable even labeling. Let G be a graph with p vertices and q edges and A = {1, 3,..., q} if q is odd or A = {1, 3,..., q + 1} if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling f : V(G) → A that induces an edge labeling f * defined by f * (uv) = f (u) + f (v) for all edges uv such thatfor all a and b in A, |v f (a) -v f (b)| ≤ 1 and the induced edge labels are 2, 4,..., 2q where v f (a) be the number of vertices v with f (v) = a for a ∈ A. A graph that admits odd vertex equitable even labeling is called odd vertex equitable even graph. We investigate the odd vertex equitable even behavior of some standard graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.1 20172017-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000100001en10.4067/S0716-09172017000100001
institution Scielo Chile
collection Scielo Chile
language English
topic Mean labeling
odd mean labeling
k-equitable labeling
vertex equitable labeling
odd vertex equitable even labeling
odd vertex equitable even graph
spellingShingle Mean labeling
odd mean labeling
k-equitable labeling
vertex equitable labeling
odd vertex equitable even labeling
odd vertex equitable even graph
Jeyanthi,P
Maheswari Kamaraj,A
Vijayalakshmi,M
Odd vertex equitable even labeling of graphs
description In this paper, we introduce a new labeling called odd vertex equitable even labeling. Let G be a graph with p vertices and q edges and A = {1, 3,..., q} if q is odd or A = {1, 3,..., q + 1} if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling f : V(G) → A that induces an edge labeling f * defined by f * (uv) = f (u) + f (v) for all edges uv such thatfor all a and b in A, |v f (a) -v f (b)| ≤ 1 and the induced edge labels are 2, 4,..., 2q where v f (a) be the number of vertices v with f (v) = a for a ∈ A. A graph that admits odd vertex equitable even labeling is called odd vertex equitable even graph. We investigate the odd vertex equitable even behavior of some standard graphs.
author Jeyanthi,P
Maheswari Kamaraj,A
Vijayalakshmi,M
author_facet Jeyanthi,P
Maheswari Kamaraj,A
Vijayalakshmi,M
author_sort Jeyanthi,P
title Odd vertex equitable even labeling of graphs
title_short Odd vertex equitable even labeling of graphs
title_full Odd vertex equitable even labeling of graphs
title_fullStr Odd vertex equitable even labeling of graphs
title_full_unstemmed Odd vertex equitable even labeling of graphs
title_sort odd vertex equitable even labeling of graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000100001
work_keys_str_mv AT jeyanthip oddvertexequitableevenlabelingofgraphs
AT maheswarikamaraja oddvertexequitableevenlabelingofgraphs
AT vijayalakshmim oddvertexequitableevenlabelingofgraphs
_version_ 1718439819722358784