Yet another variant of the Drygas functional equation on groups
Let G be a group and C the field of complex numbers. Suppose σ1,σ 2 : G → G are endomorphisms satisfying the condition σi(σi(x)) = x for all x in G and for i = 1, 2. In this paper, we find the central solution f : G → C of the equation f (xy) +...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000100002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172017000100002 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720170001000022017-02-13Yet another variant of the Drygas functional equation on groupsSahoo,Prasanna K Drygasfunctional equation; group Fréchet’s functional equation involution semigroup Whitehead functional equation Let G be a group and C the field of complex numbers. Suppose σ1,σ 2 : G → G are endomorphisms satisfying the condition σi(σi(x)) = x for all x in G and for i = 1, 2. In this paper, we find the central solution f : G → C of the equation f (xy) + f (σi(y)x) =2f (x) + f (y) + f (σ2(y)) for all x,y ∈ G which is a variant of the Drygas functional equation with two involutions. Further, we present a generalization the above functional equation and determine its central solutions. As an application, using the solutions ofthe generalized equation, we determine the solutions f, g, h, k : GxG → C ofthefunc-tional equation f (pr, qs) + g(sp, rq) = 2f (p, q) + h(r, s) + k(s, r) when f satisfies the condition f (pr, qs) = f (rp, sq) for all p, q, r, s ∈ G.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.1 20172017-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000100002en10.4067/S0716-09172017000100002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Drygasfunctional equation; group Fréchet’s functional equation involution semigroup Whitehead functional equation |
spellingShingle |
Drygasfunctional equation; group Fréchet’s functional equation involution semigroup Whitehead functional equation Sahoo,Prasanna K Yet another variant of the Drygas functional equation on groups |
description |
Let G be a group and C the field of complex numbers. Suppose σ1,σ 2 : G → G are endomorphisms satisfying the condition σi(σi(x)) = x for all x in G and for i = 1, 2. In this paper, we find the central solution f : G → C of the equation f (xy) + f (σi(y)x) =2f (x) + f (y) + f (σ2(y)) for all x,y ∈ G which is a variant of the Drygas functional equation with two involutions. Further, we present a generalization the above functional equation and determine its central solutions. As an application, using the solutions ofthe generalized equation, we determine the solutions f, g, h, k : GxG → C ofthefunc-tional equation f (pr, qs) + g(sp, rq) = 2f (p, q) + h(r, s) + k(s, r) when f satisfies the condition f (pr, qs) = f (rp, sq) for all p, q, r, s ∈ G. |
author |
Sahoo,Prasanna K |
author_facet |
Sahoo,Prasanna K |
author_sort |
Sahoo,Prasanna K |
title |
Yet another variant of the Drygas functional equation on groups |
title_short |
Yet another variant of the Drygas functional equation on groups |
title_full |
Yet another variant of the Drygas functional equation on groups |
title_fullStr |
Yet another variant of the Drygas functional equation on groups |
title_full_unstemmed |
Yet another variant of the Drygas functional equation on groups |
title_sort |
yet another variant of the drygas functional equation on groups |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2017 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000100002 |
work_keys_str_mv |
AT sahooprasannak yetanothervariantofthedrygasfunctionalequationongroups |
_version_ |
1718439819898519552 |