A weakened version of Davis-Choi-Jensen’s inequality for normalised positive linear maps
In this paper we show that the celebrated Davis-Choi-Jensen’s inequality for normalised positive linear maps can be extended in a weakened form for convex functions. A reverse inequality and applications for important instances of convex (concave) functions are also given.
Guardado en:
Autor principal: | Dragomir,S. S |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000100005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Inequalities of Hermite-Hadamard Type for h-Convex Functions on Linear Spaces
por: Dragomir,S. S.
Publicado: (2015) -
Further inequalities for log-convex functions related to Hermite-Hadamard result
por: Dragomir,S. S.
Publicado: (2019) -
Strongly convexity on fractal sets and some inequalities
por: Sánchez C.,Rainier V., et al.
Publicado: (2020) -
On generalization of K-divergence, its order relation with J-divergence and related results
por: Farid,G, et al.
Publicado: (2016) -
Companions of Hermite-Hadamard Inequality for Convex Functions (II)
por: Dragomir,S. S., et al.
Publicado: (2014)